Turn off MathJax
Article Contents
TAO Xing-yu, LIU Wen-jie, SUN Yue-hui, QIN Fei-fei, SONG Qing-e, ZHAO Ze-yu, LIU Li-juan, CHEN Tian-xiang, WANG Yun-cai. Terahertz mixer noise figure measurement[J]. Chinese Optics. doi: 10.37188/CO.2023-0193
Citation: TAO Xing-yu, LIU Wen-jie, SUN Yue-hui, QIN Fei-fei, SONG Qing-e, ZHAO Ze-yu, LIU Li-juan, CHEN Tian-xiang, WANG Yun-cai. Terahertz mixer noise figure measurement[J]. Chinese Optics. doi: 10.37188/CO.2023-0193

Terahertz mixer noise figure measurement

doi: 10.37188/CO.2023-0193
Funds:  Supported by the National Natural Science Foundation of China (No. 61927811)
More Information
  • Objective 

    Noise figure (NF) is an important parameter in evaluating the performance of transmitting a signal from a high-frequency electronic device. As the operating frequency increases, the NF of high-frequency electronic devices usually increases, and the excess noise ratio (ENR) of existing noise sources cannot meet the associated measurement requirements. Therefore, this paper aims to achieve the required measurement capabilities regarding the NF of high-frequency electronic devices.


    Based on incoherent optical mixing technology, three incoherent optical beams are combined into a unitraveling carrier photodiode (UTC-PD). A tunable terahertz (THz) photonics noise source with a high ENR in the 220-325 GHz frequency range is developed. The ENR can be tuned up to 45 dB. Based on the Y-factor method, the THz photonics noise source is applied to measure a THz mixer with large NF and negative conversion gain.


    The measured NF of the THz mixer ranges from 16 to 32 dB, the conversion gain is about -13 dB, and the uncertainty is 0.43 dB.


    The tunable THz photonics noise source with high ENR achieves the NF measurement capabilities required by different THz electronic devices. It will play an important role in the measurement of NF of THz electronic devices and in guiding further optimization.


  • loading
  • [1]
    NIU ZH Q, ZHANG B, DAI B L, et al. 220 GHz multi circuit integrated front end based on solid-state circuits for high speed communication system[J]. Chinese Journal of Electronics, 2022, 31(3): 569-580. doi: 10.1049/cje.2021.00.295
    MAIER D, REVERDY J, BILLON-PIERRON D, et al. Upgrade of EMIR's band 3 and band 4 mixers for the IRAM 30 m telescope[J]. IEEE Transactions on Terahertz Science and Technology, 2012, 2(2): 215-221. doi: 10.1109/TTHZ.2011.2180609
    PAGNINI L, COLLODI G, CIDRONALI A. A GaN-HEMT active drain-pumped mixer for S-band FMCW radar front-end applications[J]. Sensors, 2023, 23(9): 4479. doi: 10.3390/s23094479
    梁伟军, 高秋来. WR28低温标准噪声源(英文)[J]. 科学技术与工程,2011,11(31):7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018

    LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 2011, 11(31): 7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018
    FORSTÉN H, SAIJETS J H, KANTANEN M, et al. Millimeter-wave amplifier-based noise sources in SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2021, 69(11): 4689-4696. doi: 10.1109/TMTT.2021.3104028
    ZHAO R K, ZHANG ZH ZH, ZHANG Y, et al. Design and implementation of 50GHz-110GHz ultra-broadband noise source[C]. 2022 International Conference on Microwave and Millimeter Wave Technology, IEEE, 2022: 1-3.
    FIORESE V, GONCALVES J C A, BOUVOT S, et al. A 140 GHz to 170 GHz active tunable noise source development in SiGe BiCMOS 55 nm technology[C]. 2021 16th European Microwave Integrated Circuits Conference, IEEE, 2021: 125-128.
    GHANEM H, GONCALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi: 10.1109/TMTT.2020.2980513
    黄海碧, 刘文杰, 孙粤辉, 等. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学,2022,15(2):251-258. doi: 10.37188/CO.2021-0158

    HUANG H B, LIU W J, SUN Y H, et al. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. (in Chinese). doi: 10.37188/CO.2021-0158
    SUN Y H, CHEN Y X, LI P, et al. Flat millimeter-wave noise generation by optically mixing multiple wavelength-sliced ASE lights[J]. IEEE Photonics Technology Letters, 2021, 33(22): 1270-1273. doi: 10.1109/LPT.2021.3117022
    VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 2020, 32(10): 592-594. doi: 10.1109/LPT.2020.2986739
    LIU J B, LIU W J, SUN Y H, et al. Generation of broadband flat millimeter-wave white noise using rectangular ASE slices mixing[J]. Optics Communications, 2023, 530: 129106. doi: 10.1016/j.optcom.2022.129106
    SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi: 10.1109/TMTT.2008.2007325
    SONG H J, YAITA M. On-wafer noise measurement at 300 GHz using UTC-PD as noise source[J]. IEEE Microwave and Wireless Components Letters, 2014, 24(8): 578-580. doi: 10.1109/LMWC.2014.2324762
    GHANEM H, LEPILLIET S, DANNEVILLE F, et al. 300-GHz intermodulation/noise characterization enabled by a single THz photonics source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(10): 1013-1016. doi: 10.1109/LMWC.2020.3020817
    KHAMAISI B, SOCHER E. A 230-310 GHz down converter with integrated local oscillator in 65 nm CMOS technology[C]. 9th European Microwave Integrated Circuits Conference, IEEE, 2014: 136-139.
    HARA S, KATAYAMA K, TAKANO K, et al. A 32Gbit/s 16QAM CMOS receiver in 300GHz band[C]. 2017 IEEE MTT-S International Microwave Symposium, IEEE, 2017: 1703-1706.
    OJEFORS E, HEINEMANN B, PFEIFFER U R. Subharmonic 220- and 320-GHz SiGe HBT receiver front-ends[J]. IEEE Transactions on Microwave Theory and Techniques, 2012, 60(5): 1397-1404. doi: 10.1109/TMTT.2012.2190092
    董建涛. Y-因子算法与噪声系数不确定度分析[J]. 国外电子测量技术,2009,28(3):28-30. doi: 10.3969/j.issn.1002-8978.2009.03.009

    DONG J T. Y-factor method and the analysis of NF uncertain[J]. Foreign Electronic Measurement Technology, 2009, 28(3): 28-30. (in Chinese). doi: 10.3969/j.issn.1002-8978.2009.03.009
    孙粤辉, 郭亚, 王云才, 等. 130~170 GHz平坦毫米波噪声信号产生技术[J]. 中国科学: 信息科学,2022,52(11):2155-2162.

    SUN Y H, GUO Y, WANG Y C, et al. Generation of 130-170 GHz flat millimeter-wave noise signal[J]. SCIENTIA SINICA Informationis, 2022, 52(11): 2155-2162. (in Chinese).
    CHEN ZH, DENG J Q, WANG M, et al. Design of a novel 170GHz–260GHz sub-harmonic mixer based on planar Schottky diodes[C]. Proceedings of IEEE 9th UK-Europe-China Workshop on Millimetre Waves and Terahertz Technologies, IEEE, 2016: 186-188.
    陈晓华. 3mm噪声系数测量系统[D]. 西安: 西安电子科技大学, 2009.

    CHEN X H. 3mm noise figure measurement system[D]. Xi’an: Xidian University, 2009. (in Chinese).
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(37) PDF downloads(7) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint