Turn off MathJax
Article Contents
ZHAO Bian-li, WANG Jing, LI Wen-wen, ZHANG Jing, SUN Ning, WANG Deng-ke, JIANG Nan. Study on substrate lateral radiation of electrically pumped organic light-emitting diodes[J]. Chinese Optics. doi: 10.37188/CO.2023-0190
Citation: ZHAO Bian-li, WANG Jing, LI Wen-wen, ZHANG Jing, SUN Ning, WANG Deng-ke, JIANG Nan. Study on substrate lateral radiation of electrically pumped organic light-emitting diodes[J]. Chinese Optics. doi: 10.37188/CO.2023-0190

Study on substrate lateral radiation of electrically pumped organic light-emitting diodes

doi: 10.37188/CO.2023-0190
Funds:  Supported by
More Information
  • There is a significant narrowing of the lateral radiation spectrum of the substrate of organic light-emitting diodes as compared to the forward radiation spectrum. Studying the factors that affect the lateral radiation spectrum narrowing of the device and further reducing the spectral linewidth can provide a foundation for the study of the electrically pumped organic light-emitting diode laser radiation. This paper studies the full width at half maximum, peak wavelength, and polarization characteristics of lateral radiation spectrum in organic light-emitting diode substrate, with the thickness changes of hole transport layer NPB. The lateral radiation spectra of organic light-emitting diode with Ag film evaporated on both sides of the substrate edge are compared with those of organic light-emitting diode without Ag film. The full width at half maximum of the lateral radiation spectrum with Ag film is narrower. When the NPB thickness is 130 nm, the full width at half maximum of the lateral radiation spectrum in the device substrate reaches its narrowest, which is 14 nm. This shows that the optical resonator will affect the light propagating laterally in an organic light-emitting diode substrate when mirrors are provided on both edge sides of the substrate. The results indicate new approaches to narrowing the radiation spectrum and amplifying the light of organic light-emitting diodes.


  • loading
  • [1]
    GRAUPNER W, LEISING G, LANZANI G, et al. Femtosecond relaxation of photoexcitations in a poly(para-phenylene)-type ladder polymer[J]. Physical Review Letters, 1996, 76(5): 847-850. doi: 10.1103/PhysRevLett.76.847
    HIDE F, SCHWARTZ B J, DÍAZ-GARCÍA M A, et al. Laser emission from solutions and films containing semiconducting polymer and titanium dioxide nanocrystals[J]. Chemical Physics Letters, 1996, 256(4-5): 424-430. doi: 10.1016/0009-2614(96)00450-2
    TESSLER N. Lasers based on semiconducting organic materials[J]. Advanced Materials, 1999, 11(5): 363-370. doi: 10.1002/(SICI)1521-4095(199903)11:5<363::AID-ADMA363>3.0.CO;2-Y
    DÍAZ-GARCÍA M A, HIDE F, SCHWARTZ B J, et al. Plastic lasers: semiconducting polymers as a new class of solid-state laser materials[J]. Synthetic Metals, 1997, 84(1-3): 455-462. doi: 10.1016/S0379-6779(97)80829-6
    ICHIKAWA M, NAKAMURA K, INOUE M, et al. Photopumped laser oscillation and charge-injected luminescence from organic semiconductor single crystals of a thiophene/phenylene co-oligomer[J]. Applied Physics Letters, 2005, 87(22): 221113. doi: 10.1063/1.2138361
    LAWRENCE J R, TURNBULL G A, SAMUEL I D W, et al. Optical amplification in a first-generation dendritic organic semiconductor[J]. Optics Letters, 2004, 29(8): 869-871. doi: 10.1364/OL.29.000869
    MCGEHEE M D, GUPTA R, VEENSTRA S, et al. Amplified spontaneous emission from photopumped films of a conjugated polymer[J]. Physical Review B, 1998, 58(11): 7035-7039. doi: 10.1103/PhysRevB.58.7035
    BECKER H, BURNS S E, FRIEND R H. Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers[J]. Physical Review B, 1997, 56(4): 1893-1905. doi: 10.1103/PhysRevB.56.1893
    BURROWS P E, SHEN Z, BULOVIC V, et al. Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices[J]. Journal of Applied Physics, 1996, 79(10): 7991-8006. doi: 10.1063/1.362350
    NOWY S, KRUMMACHER B C, FRISCHEISEN J, et al. Light extraction and optical loss mechanisms in organic light-emitting diodes: Influence of the emitter quantum efficiency[J]. Journal of Applied Physics, 2008, 104(12): 123109. doi: 10.1063/1.3043800
    LIN J, HU Y SH, LV Y, et al. Light gain amplification in microcavity organic semiconductor laser diodes under electrical pumping[J]. Science Bulletin, 2017, 62(24): 1637-1638. doi: 10.1016/j.scib.2017.12.010
    SEO J A, GONG M S, LEE J Y. High external quantum efficiency in yellow and white phosphorescent organic light-emitting diodes using an indoloacridinefluorene type host material[J]. Organic Electronics, 2014, 15(8): 1843-1848. doi: 10.1016/j.orgel.2014.05.017
    AHMAD V, SOBUS J, BENCHEIKH F, et al. High EQE and high brightness solution-processed TADF light-emitting transistors and OLEDs[J]. Advanced Optical Materials, 2020, 8(18): 2000554. doi: 10.1002/adom.202000554
    BALDO M A, O'BRIEN D F, YOU Y, et al. Highly efficient phosphorescent emission from organic electroluminescent devices[J]. Nature, 1998, 395(6698): 151-154. doi: 10.1038/25954
    HU Y SH, BENCHEIKH F, CHÉNAIS S, et al. High performance planar microcavity organic semiconductor lasers based on thermally evaporated top distributed Bragg reflector[J]. Applied Physics Letters, 2020, 117(15): 153301. doi: 10.1063/5.0016052
    MATSUSHIMA T, BENCHEIKH F, KOMINO T, et al. High performance from extraordinarily thick organic light-emitting diodes[J]. Nature, 2019, 572(7770): 502-506. doi: 10.1038/s41586-019-1435-5
    SLOWIK I, FISCHER A, FRÖB H, et al. Novel organic light-emitting diode design for future lasing applications[J]. Organic Electronics, 2017, 48: 132-137. doi: 10.1016/j.orgel.2017.05.048
    RAN G Z, JIANG D F, KAN Q, et al. Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices[J]. Applied Physics Letters, 2010, 97(23): 233304. doi: 10.1063/1.3525161
    TIAN Y, GAN ZH Q, ZHOU ZH Q, et al. Spectrally narrowed edge emission from organic light-emitting diodes[J]. Applied Physics Letters, 2007, 91(14): 143504. doi: 10.1063/1.2778358
    YOKOYAMA D, NAKANOTANI H, SETOGUCHI Y, et al. Spectrally narrow emission at cutoff wavelength from edge of electrically pumped organic light-emitting diodes[J]. Japanese Journal of Applied Physics, 2007, 46(9L): L826-L829. doi: 10.1143/JJAP.46.L826
    PAUCHARD M, VEHSE M, SWENSEN J, et al. Optical amplification of the cutoff mode in planar asymmetric polymer waveguides[J]. Applied Physics Letters, 2003, 83(22): 4488-4490. doi: 10.1063/1.1627477
    CHANG J F, HUANG Y S, CHEN P T, et al. Reduced threshold of optically pumped amplified spontaneous emission and narrow line-width electroluminescence at cutoff wavelength from bilayer organic waveguide devices[J]. Optics Express, 2015, 23(11): 14695-14706. doi: 10.1364/OE.23.014695
    RAN G Z, JIANG D F. Polarized electroluminescence from edge-emission organic light emitting devices[J]. Proceedings of SPIE, 2011, 7943: 794314. doi: 10.1117/12.874516
    BRÜTTING W, FRISCHEISEN J, SCHMIDT T D, et al. Device efficiency of organic light-emitting diodes: Progress by improved light outcoupling[J]. Physica Status Solidi (A), 2013, 210(1): 44-65. doi: 10.1002/pssa.201228320
    DEPPE D G, LEI C, LIN C C, et al. Spontaneous emission from planar microstructures[J]. Journal of Modern Optics, 1994, 41(2): 325-344. doi: 10.1080/09500349414550361
    GU G, SHEN Z L, BURROWS P E, et al. Transparent flexible organic light-emitting devices[J]. Advanced Materials, 1997, 9(9): 725-728. doi: 10.1002/adma.19970090910
    SHEN J L, CHANG J Y, LIU H C, et al. Nearly in-plane photoluminescence studies in asymmetric semiconductor microcavities[J]. Solid State Communications, 2000, 116(8): 431-435. doi: 10.1016/S0038-1098(00)00356-2
    BULOVIĆ V, KHALFIN V B, GU G, et al. Weak microcavity effects in organic light-emitting devices[J]. Physical Review B, 1998, 58(7): 3730-3740. doi: 10.1103/PhysRevB.58.3730
    LIN CH L, CHANG H C, TIEN K C, et al. Influences of resonant wavelengths on performances of microcavity organic light-emitting devices[J]. Applied Physics Letters, 2007, 90(7): 071111. doi: 10.1063/1.2472541
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(27) PDF downloads(8) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint