Turn off MathJax
Article Contents
CHEN Ming-yu, XIE Yue-chen, LV Xiong-tao, GUO Jian-rong, JIA Guo-jun, XU Zhi-peng, WANG Shi-ling, XIANG Zhen, LIU Dong. Research on the detection of surface and internal defects in cold rolled steel[J]. Chinese Optics. doi: 10.37188/CO.2023-0189
Citation: CHEN Ming-yu, XIE Yue-chen, LV Xiong-tao, GUO Jian-rong, JIA Guo-jun, XU Zhi-peng, WANG Shi-ling, XIANG Zhen, LIU Dong. Research on the detection of surface and internal defects in cold rolled steel[J]. Chinese Optics. doi: 10.37188/CO.2023-0189

Research on the detection of surface and internal defects in cold rolled steel

doi: 10.37188/CO.2023-0189
Funds:  Supported by National key research and development program (No. 2022YFB3403404); State Key Laboratory of Extreme Photonics and Instrumentation Innovation Program (No. EPI2023ZD01)
More Information
  • This paper focuses on the comprehensive detection of defects in cold-rolled steel through examination for surface and internal defects. Regarding surface defect detection, a bilateral line light illumination scheme is proposed and compared with line light illumination. As for internal defect detection, the applicability of various metal internal inspection technologies such as X-ray, ultrasound, and infrared thermography is analyzed from the perspectives of detection resolution and defect edge characteristics. The results show that bilateral line light illumination not only increases the overall average precision of the YOLOv5 object detection algorithm model to 90.16% (an increase of 15.46% compared to the line light illumination) but also improves model classification and training efficiency. X-ray and ultrasound inspection technologies can detect blind holes with a diameter of 0.25 mm, while infrared thermography can detect blind holes with a diameter of 1 mm. In evaluating defect edge characteristics, X-ray inspection technology exhibits a minimum blind hole edge grayscale difference of 145, ultrasound of 89, and infrared thermography of 30. This study addresses the need for improved detection of surface defects in cold rolled steel and provides new research insights for the detection of internal defects.

     

  • loading
  • [1]
    LI ZH, LI ZH, HUANG H, et al. Green lithium: photoelectrochemical extraction[J]. PhotoniX, 2023, 4(1): 23.
    [2]
    ZHU Y N, LUO H, YANG CH Y, et al. Color-preserving passive radiative cooling for an actively temperature-regulated enclosure[J]. Light: Science & Applications, 2022, 11(1): 122.
    [3]
    李玮. 用于锂离子电池钢壳的镀镍钴钢带制备工艺及耐蚀性研究[D]. 湘潭: 湘潭大学, 2011.

    LI W. The study of preparation and corrosion resistance of cobalt-nickel-plated steel strip for lithium-ion battery shell[D]. Xiangtan: Xiangtan University, 2011. (in Chinese).
    [4]
    赵小龙, 王雄, 罗晓阳, 等. 退火温度对CSP冷轧低碳高强钢带组织和性能的影响[J]. 金属热处理,2021,46(1):43-49.

    ZHAO X L, WANG X, LUO X Y, et al. Effect of annealing temperature on microstructure and properties of cold rolled low carbon high strength sheet by CSP[J]. Heat Treatment of Metals, 2021, 46(1): 43-49. (in Chinese).
    [5]
    MANCINI E, CAMPANA F, SASSO M, et al. Effects of cold rolling process variables on final surface quality of stainless steel thin strip[J]. The International Journal of Advanced Manufacturing Technology, 2012, 61(1-4): 63-72.
    [6]
    董双鹏, 宋进英, 陈业熊, 等. 冷轧钢板表面缺陷的种类及形成原因[J]. 机械工程材料,2012,36(7):100-104.

    DONG SH P, SONG J Y, CHEN Y X, et al. Types and forming reasons of cold rolled steel plate surface defects[J]. Materials for Mechanical Engineering, 2012, 36(7): 100-104. (in Chinese).
    [7]
    胡华东, 王乐, 汤化胜, 等. 冷轧宽厚规格深冲钢梗印缺陷成因分析及其控制措施[J]. 轧钢,2022,39(2):124-128.

    HU H D, WANG L, TANG H SH, et al. Cause analysis of stem seal defects of cold rolled wide and thick gauge deep drawing steel strip and its control measures[J]. Steel Rolling, 2022, 39(2): 124-128. (in Chinese).
    [8]
    王畅, 于洋, 王林, 等. 冷轧双相钢镀锌条带状色差缺陷产生原因及机理研究[J]. 轧钢,2023,40(1):52-58.

    WANG CH, YU Y, WANG L, et al. Study on the cause and mechanism of the strip color difference defects of cold rolled dual- phase steel galvanized strip[J]. Steel Rolling, 2023, 40(1): 52-58. (in Chinese).
    [9]
    SURESH B R, FUNDAKOWSKI R A, LEVITT T S, et al. A real-time automated visual inspection system for hot steel slabs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1983, PAMI-5(6): 563-572.
    [10]
    NATH V, CHATTOPADHYAY C, DESAI K A. On enhancing prediction abilities of vision-based metallic surface defect classification through adversarial training[J]. Engineering Applications of Artificial Intelligence, 2023, 117: 105553.
    [11]
    杨水山, 何永辉, 王康健. 高速冷连轧带钢表面质量在线检测系统开发与应用[J]. 世界钢铁,2013,13(3):62-67. doi: 10.3969/j.issn.1672-9587.2013.03.011

    YANG SH SH, HE Y H, WANG K J. Development on on-line inspection system for high speed strip surface quality at cold continuous rolling mill[J]. World Iron & Steel, 2013, 13(3): 62-67. (in Chinese). doi: 10.3969/j.issn.1672-9587.2013.03.011
    [12]
    沈春光, 李虎威, 荆涛, 等. 基于深度学习的带钢表面缺陷检测在小样本数据集的应用[J]. 轧钢,2022,39(2):82-86.

    SHEN CH G, LI H W, JING T, et al. Application of deep learning-based surface defect recognition of plate in small sample dataset[J]. Steel Rolling, 2022, 39(2): 82-86. (in Chinese).
    [13]
    JUNet A, MESSAGER A, WECK A, et al. Internal fatigue crack propagation in a Ti-6Al-4V alloy: an in situ study[J]. International Journal of Fatigue, 2023, 168: 107450.
    [14]
    YANG Q ZH, ZHAO Y, HU X A, et al. Small crack propagation and closure behaviours and mechanisms in a powder metallurgy superalloy at high temperature in air[J]. International Journal of Fatigue, 2023, 175: 107797.
    [15]
    白贇沨, 刘祎, 张小琳, 等. 基于GF-WLS和VSM的多能量X射线图像融合方法[J]. 无损检测,2022,44(9):34-41,74. doi: 10.11973/wsjc202209007

    BAI Y F, LIU Y, ZHANG X L, et al. Multi energy X-ray image fusion method based on GF-WLS and VSM[J]. Nondestructive Testing, 2022, 44(9): 34-41,74. (in Chinese). doi: 10.11973/wsjc202209007
    [16]
    TAKADA H, TOMURA Y, ARATANI M, et al. On-line detection system for internal flaws in as-hot-rolled steel strip using ultrasonic probe array[J]. Materials Transactions, 2011, 52(3): 531-538.
    [17]
    张永生, 黄松岭, 赵伟, 等. 基于电磁超声的钢板裂纹检测系统[J]. 无损检测,2009,31(4):307-310.

    ZHANG Y SH, HUANG S L, ZHAO W, et al. Detection system about steel cracks based on electronic ultrasonic[J]. Nondestructive Testing, 2009, 31(4): 307-310. (in Chinese).
    [18]
    LIU SH Y, JIA K N, WAN H P, et al. Inspection of the internal defects with different size in Ni and Ti additive manufactured components using laser ultrasonic technology[J]. Optics & Laser Technology, 2022, 146: 107543.
    [19]
    ALMOND D P, PICKERING S G. An analytical study of the pulsed thermography defect detection limit[J]. Journal of Applied Physics, 2012, 111(9): 093510.
    [20]
    ZHUO L J, YANG X, ZHU J G, et al. Size determination of interior defects by reconstruction of subsurface virtual heat flux for step heating thermography[J]. NDT & E International, 2023, 133: 102734.
    [21]
    WANG F, SHENG J, SFARRA S, et al. Multimode infrared thermal-wave imaging in non-destructive testing and evaluation (NDT&E): physical principles, modulated waveform, and excitation heat source[J]. Infrared Physics & Technology, 2023, 135: 104993.
    [22]
    NAYAR S K, IKEUCHI K, KANADE T. Surface reflection: physical and geometrical perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(7): 611-634.
    [23]
    张青树, 齐韦. 冷轧带钢表面形貌测试及其粗糙度均匀性控制研究[J]. 轧钢,2022,39(5):103-107.

    ZHANG Q SH, QI W. Study on surface profile test and roughness uniformity control of cold rolled strip[J]. Steel Rolling, 2022, 39(5): 103-107. (in Chinese).
    [24]
    杨甬英, 陆春华, 梁蛟, 等. 光学元件表面缺陷的显微散射暗场成像及数字化评价系统[J]. 光学学报,2007,27(6):1031-1038. doi: 10.3321/j.issn:0253-2239.2007.06.015

    YANG Y Y, LU CH H, LIANG J, et al. Microscopic dark-field scattering imaging and digitalization evaluation system of defects on optical devices precision surface[J]. Acta Optica Sinica, 2007, 27(6): 1031-1038. (in Chinese). doi: 10.3321/j.issn:0253-2239.2007.06.015
    [25]
    LI X C, WU Q Q, XIAO B P, et al. High-speed and robust infrared-guiding multiuser eye localization system for autostereoscopic display[J]. Applied Optics, 2020, 59(14): 4199-4208.
    [26]
    吴海滨, 魏喜盈, 刘美红, 等. 结合空洞卷积和迁移学习改进YOLOv4的X光安检危险品检测[J]. 中国光学,2021,14(6):1417-1425.

    WU H B, WEI X Y, LIU M H, et al. Improved YOLOv4 for dangerous goods detection in X-ray inspection combined with atrous convolution and transfer learning[J]. Chinese Optics, 2021, 14(6): 1417-1425. (in Chinese).
    [27]
    张寅, 朱桂熠, 施天俊, 等. 基于特征融合与注意力的遥感图像小目标检测[J]. 光学学报,2022,42(24):2415001.

    ZHANG Y, ZHU G Y, SHI T J, et al. Small object detection in remote sensing images based on feature fusion and attention[J]. Acta Optica Sinica, 2022, 42(24): 2415001. (in Chinese).
    [28]
    张印辉, 庄宏, 何自芬, 等. 氨气泄漏混洗自注意力轻量化红外检测[J]. 中国光学(中英文),2023,16(3):607-619.

    ZHENG Y H, ZHUANG H, HE Z F, et al. Lightweight infrared detection of ammonia leakage using shuffle and self-attention[J]. Chinese Optics, 2023, 16(3): 607-619. (in Chinese).
    [29]
    刘彦磊, 李孟喆, 王宣宣. 轻量型YOLOv5s车载红外图像目标检测[J]. 中国光学(中英文),2023,16(5):1045-1055.

    LIU Y L, LI M ZH, WANG X X. Lightweight YOLOv5s vehicle infrared image target detection[J]. Chinese Optics, 2023, 16(5): 1045-1055. (in Chinese).
    [30]
    VILLARRAGA-GÓMEZ H, SMITH S T. Effect of geometric magnification on dimensional measurements with a metrology-grade X-ray computed tomography system[J]. Precision Engineering, 2022, 73: 488-503.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article views(46) PDF downloads(11) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return