Turn off MathJax
Article Contents
LI Ying-chao, ZHAO Zhe-hao, WANG Qi, LIU Jia-nan, SHI Hao-dong, FU Qiang, SUN Hong-yu. Polarization spectral image fusion method for hybrid backgrounds of ground objects[J]. Chinese Optics. doi: 10.37188/CO.2023-0185
Citation: LI Ying-chao, ZHAO Zhe-hao, WANG Qi, LIU Jia-nan, SHI Hao-dong, FU Qiang, SUN Hong-yu. Polarization spectral image fusion method for hybrid backgrounds of ground objects[J]. Chinese Optics. doi: 10.37188/CO.2023-0185

Polarization spectral image fusion method for hybrid backgrounds of ground objects

doi: 10.37188/CO.2023-0185
Funds:  Supported by National Natural Science Foundation of China (No. 61890960)
More Information
  • To address the issues of blurred edge details and poor contrast in multi-scale transform fused images obtained using remote sensing detection methods for mixed background features, an image fusion approach that combines the sparse representation of non-downsampled contour wavelet transform and a guided filter was utilised to enhance the quality and visual appearance of the fused images. This method involved several steps: Firstly, a multi-scale and multi-directional decomposition was performed on both spectral and polarimetric images using non-downsampled contour wavelet transform to isolate the feature information in each subband; secondly, the low-frequency subbands were fused using a sparse representation approach to minimize the loss of contrast in the fused image; additionally, the high-frequency subbands were fused through a bootstrap filter to enhance the detail information and the contours of the image; finally, the low-frequency and high-frequency fusion coefficients were inverted using non-downsampled contour wavelet inversion to generate the final fused image. Analysis indicates that this method has increased the contrast of the fused image by up to 54.5% relative to the original spectral image and by 15.4% compared to the polarimetric image. This has resulted in a fused image in which it is easier to distinguish objects in shadows within a mixed background. This method was used to fuse spectral and polarimetric images captured by a polarimetric spectral imager at different wavelengths, which resulted in true-colour reproduction. These true-colour restored images demonstrate that this fusion method retains environmental information within the mixed background while distinguishing the object from the background, effectively improving the image quality of polarization spectral remote sensing detection imaging. This approach enhances the integrity and authenticity of image information in polarization spectral remote sensing detection imaging, thereby expanding its application scope in remote sensing detection of complex environments and image recognition.

     

  • loading
  • [1]
    HE Z J, ZHANG Z Z, GUO M Q, et al. Adaptive unsupervised-shadow-detection approach for remote-sensing image based on multichannel features[J]. Remote Sensing, 2022, 14(12): 2756. doi: 10.3390/rs14122756
    [2]
    LI J X, HONG D F, GAO L R, et al. Deep learning in multimodal remote sensing data fusion: a comprehensive review[J]. International Journal of Applied Earth Observation and Geoinformation, 2022, 112: 102926. doi: 10.1016/j.jag.2022.102926
    [3]
    张璐, 李博, 李寒霜, 等. 超光谱分辨率紫外双通道共光路成像光谱仪设计[J]. 中国光学(中英文),2022,15(5):1029-1037. doi: 10.37188/CO.2022-0125

    ZHANG L, LI B, LI H SH, et al. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. Chinese Optics, 2022, 15(5): 1029-1037. (in Chinese). doi: 10.37188/CO.2022-0125
    [4]
    周俊焯, 郝佳, 余晓畅, 等. 面向偏振成像的超构表面研究进展[J]. 中国光学(中英文),2023,16(5):973-995. doi: 10.37188/CO.2022-0234

    ZHOU J ZH, HAO J, YU X CH, et al. Recent advances in metasurfaces for polarization imaging[J]. Chinese Optics, 2023, 16(5): 973-995. (in Chinese). doi: 10.37188/CO.2022-0234
    [5]
    WANG J Y, SHI H D, LIU J N, et al. Compressive space-dimensional dual-coded hyperspectral polarimeter (CSDHP) and interactive design method[J]. Optics Express, 2023, 31(6): 9886-9903. (查阅网上资料, 未能确认标黄作者信息, 请确认) .

    WANG J Y, SHI H D, LIU J N, et al. . Compressive space-dimensional dual-coded hyperspectral polarimeter (CSDHP) and interactive design method[J]. Optics Express, 2023, 31(6): 9886-9903. (查阅网上资料, 未能确认标黄作者信息, 请确认).
    [6]
    MA J Y, MA Y, LI CH. Infrared and visible image fusion methods and applications: a survey[J]. Information Fusion, 2019, 45: 153-178. doi: 10.1016/j.inffus.2018.02.004
    [7]
    KAUR H, KOUNDAL D, KADYAN V. Image fusion techniques: a survey[J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4425-4447. doi: 10.1007/s11831-021-09540-7
    [8]
    ZHAO Y, ZHANG L, ZHANG D, et al. Object separation by polarimetric and spectral imagery fusion[J]. Computer Vision and Image Understanding, 2009, 113(8): 855-866. doi: 10.1016/j.cviu.2009.03.002
    [9]
    于洵, 杨烨, 姜旭, 等. 基于偏振光谱成像的目标识别方法研究[J]. 应用光学,2016,37(4):537-541. doi: 10.5768/JAO201637.0402001

    YU X, YANG Y, JIANG X, et al. Recognition of camouflage targets by polarization spectral imaging system[J]. Journal of Applied Optics, 2016, 37(4): 537-541. (in Chinese). doi: 10.5768/JAO201637.0402001
    [10]
    牛思聪. 基于生成对抗网络的偏振高光谱图像处理与分类算法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    NIU S C. Research on polarization hyperspectral image processing and classification algorithm based on generative countermeasure network[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese).
    [11]
    钟菁菁, 刘骁, 王雪霁, 等. 偏振光谱多维信息的重构融合算法[J]. 光谱学与光谱分析,2023,43(4):1254-1261.

    ZHONG J J, LIU X, WANG X J, et al. A multidimensional information fusion algorithm for polarization spectrum reconstruction based on nonsubsampled contourlet transform[J]. Spectroscopy and Spectral Analysis, 2023, 43(4): 1254-1261. (in Chinese).
    [12]
    LIU Y, YAN B Y, ZHANG R Z, et al. Multi-scale mixed attention network for CT and MRI image fusion[J]. Entropy, 2022, 24(6): 843. doi: 10.3390/e24060843
    [13]
    朱攀, 刘泽阳, 黄战华. 基于DTCWT和稀疏表示的红外偏振与光强图像融合[J]. 光子学报,2017,46(12):1210002. doi: 10.3788/gzxb20174612.1210002

    ZHU P, LIU Z Y, HUANG ZH H. Infrared polarization and intensity image fusion based on dual-tree complex wavelet transform and sparse representation[J]. Acta Photonica Sinica, 2017, 46(12): 1210002. (in Chinese). doi: 10.3788/gzxb20174612.1210002
    [14]
    DONG L M, YANG Q X, WU H Y, et al. High quality multi-spectral and panchromatic image fusion technologies based on curvelet transform[J]. Neurocomputing, 2015, 159: 268-274. doi: 10.1016/j.neucom.2015.01.050
    [15]
    HUANG Y, BI D Y, WU D P. Infrared and visible image fusion based on different constraints in the non-subsampled shearlet transform domain[J]. Sensors, 2018, 18(4): 1169. doi: 10.3390/s18041169
    [16]
    WANG Z Y, LI X F, DUAN H R, et al. Medical image fusion based on convolutional neural networks and non-subsampled contourlet transform[J]. Expert Systems with Applications, 2021, 171: 114574. doi: 10.1016/j.eswa.2021.114574
    [17]
    CH M M I, GHAFOOR A, BAKHSHI A D, et al. Medical image fusion using non subsampled contourlet transform and iterative joint filter[J]. Multimedia Tools and Applications, 2022, 81(3): 4495-4509. doi: 10.1007/s11042-021-11753-8
    [18]
    李文, 叶坤涛, 李晟. 基于优化PCNN与区域特征引导法则的图像融合[J]. 激光与红外,2021,51(8):1104-1112.

    LI W, YE K T, LI SH. Image fusion based on optimized PCNN and region feature guided rule[J]. Laser & Infrared, 2021, 51(8): 1104-1112. (in Chinese).
    [19]
    杨艳春, 李永萍, 党建武, 等. 基于快速交替引导滤波和CNN的红外与可见光图像融合[J]. 光学 精密工程,2023,31(10):1548-1562. doi: 10.37188/OPE.20233110.1548

    YANG Y CH, LI Y P, DANG J W, et al. Infrared and visible image fusion based on fast alternating guided filtering and CNN[J]. Optics and Precision Engineering, 2023, 31(10): 1548-1562. (in Chinese). doi: 10.37188/OPE.20233110.1548
    [20]
    WANG K P, QI G Q, ZHU ZH Q, et al. A novel geometric dictionary construction approach for sparse representation based image fusion[J]. Entropy, 2017, 19(7): 306. doi: 10.3390/e19070306
    [21]
    LV X B, LI Y W, ZHU SH SH, et al. Snapshot spectral polarimetric light field imaging using a single detector[J]. Optics Letters, 2020, 45(23): 6522-6525. doi: 10.1364/OL.409476
    [22]
    LI X B, HU H F, GOUDAIL F, et al. Fundamental precision limits of full Stokes polarimeters based on DoFP polarization cameras for an arbitrary number of acquisitions[J]. Optics Express, 2019, 27(22): 31261-31272. doi: 10.1364/OE.27.031261
    [23]
    杨之文, 高胜钢, 王培纲. 几种地物反射光的偏振特性[J]. 光学学报,2005,25(2):241-245. doi: 10.3321/j.issn:0253-2239.2005.02.022

    YANG ZH W, GAO SH J, WANG P G. Polarization of reflected light by earth objects[J]. Acta Optica Sinica, 2005, 25(2): 241-245. (in Chinese). doi: 10.3321/j.issn:0253-2239.2005.02.022
    [24]
    DA CUNHA A L, ZHOU J, DO M N. The nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Transactions on Image Processing, 2006, 15(10): 3089-3101. doi: 10.1109/TIP.2006.877507
    [25]
    OLSHAUSEN B A, FIELD D J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images[J]. Nature, 1996, 381(6583): 607-609. doi: 10.1038/381607a0
    [26]
    丁贵鹏, 陶钢, 李英超, 等. 基于非下采样轮廓波变换与引导滤波器的红外及可见光图像融合[J]. 兵工学报,2021,42(9):1911-1922.

    DING G P, TAO G, LI Y CH, et al. Infrared and visible images fusion based on non-subsampled contourlet transform and guided filter[J]. Acta Armamentarii, 2021, 42(9): 1911-1922. (in Chinese).
    [27]
    许廷发, 李俊涛, 张一舟, 等. 真彩色传递双波段图像融合[J]. 中国光学,2014,7(3):402-410.

    XU T F, LI J T, ZHANG Y ZH, et al. True color transfer for dual band image fusion[J]. Chinese Optics, 2014, 7(3): 402-410. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(7)

    Article views(79) PDF downloads(15) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return