Turn off MathJax
Article Contents
SUN Tangzheng, LI Yunfei, TAN Jingrong, DU Xiaojuan, DING Jiayu, REN Shuting, XU Hao, WANG Chong, YANG Jinfang, ZHANG Mingxia, ZHU Yongle, DONG Zhong, LING Weijun. Tandem pumped Q-switched mode-locked laser operation of Tm:CYA laser[J]. Chinese Optics. doi: 10.37188/CO.2023-0162
Citation: SUN Tangzheng, LI Yunfei, TAN Jingrong, DU Xiaojuan, DING Jiayu, REN Shuting, XU Hao, WANG Chong, YANG Jinfang, ZHANG Mingxia, ZHU Yongle, DONG Zhong, LING Weijun. Tandem pumped Q-switched mode-locked laser operation of Tm:CYA laser[J]. Chinese Optics. doi: 10.37188/CO.2023-0162

Tandem pumped Q-switched mode-locked laser operation of Tm:CYA laser

doi: 10.37188/CO.2023-0162
Funds:  Supported by National Natural Science Foundation of China (No. 62165012); Key R&D Program of Gansu Province (No. 21YFIGE300); Gansu Provincial Higher Education Industry Support and Guidance Project (No. 2020C-23); Gansu Provincial Department of Education: Education Unveiling and Leading Project (No. 2021jyjbgs-06); Gansu Provincial Higher Education Innovation Fund Project (No. 2021B-190); Qinzhou District Science and Technology Plan (No. 2021-SHFZG-1442); 2023 Gansu Provincial University Young Doctoral Support Project (No. 2023QB-013); Tianshui Normal University 2022 special project for the construction of scientific research and innovation platform (No. PTJ2022-06); Tianshui Normal University Graduate Innovation Guidance Project (No. TYCX2235); Gansu Province Outstanding Graduate Innovation Star Program (No. 2022CXZX-796)、 Graduate Innovation Star Program (No. 2023CXZX-792).
More Information
  • Passively Q-switched mode-locked operation was realized for the first time by inserting a semiconductor saturable absorption mirror (SESAM) mode-locking element into a Tm:CaYALO4(Tm:CYA) laser using in-band pumping technology. The laser cavity adopted an X-type four-mirror cavity structure, and the pump source was an Er:Y3Al5O12(Er:YAG) solid-state laser with a central wavelength of 1650 nm. Output coupling mirrors with transmittances of 0.5%, 1.5%, 3%, and 5% were used to study the laser’s continuous wave (CW) output and mode-locking output characteristics. The experimental results show that the laser has the best output characteristics when an output coupling mirror with a transmittance of 5% is used. The maximum power of 894 mW and the maximum slope efficiency of 16% were obtained when the laser operated in the CW regime. After the CW power was optimized to the highest, the SESAM mode-locked element was added to the optical path. When the absorbed pump power became greater than 1.86 W, the laser operation entered an unstable Q-switched state; when the absorbed pump power increased to 5.7 W, a stable passively Q-switched mode-locked operation was achieved; when the absorbed pump power reached 6.99 W, a mode-locked pulse laser with a maximum output power of 399 mW was obtained by using a 5% output mirror. At that time, the repetition frequency under the Q-switched envelope was 98.11 MHz, the pulse width was 619.4 ps, and the corresponding maximum single pulse energy was 4.07 nJ. The mode-locked pulse modulation depth in a Q-switched envelope was observed to be close to 100%. The experimental results show that same-band pumping technology can be used in lasers to generate Q-switched mode-locked pulses, which provides a new pumping method for generating ultrashort pulse lasers.

     

  • loading
  • [1]
    BELYAEV A N, CHABUSHKIN A N, KHRUSHCHALINA S A, et al. Investigation of endovenous laser ablation of varicose veins in vitro using 1.885-μm laser radiation[J]. Lasers in Medical Science, 2016, 31(3): 503-510. doi: 10.1007/s10103-016-1877-z
    [2]
    田俊涛, 李辉, 赵莉莉, 等. 温度调谐ZnGeP2长波红外光参量振荡器[J]. 中国光学(中英文),2023,16(4):861-867. doi: 10.37188/CO.2022-0217

    TIAN J T, LI H, ZHAO L L, et al. Tunable long-wave infrared optical parametric oscillator based on temperature-adjustable ZnGeP2[J]. Chinese Optics, 2023, 16(4): 861-867. doi: 10.37188/CO.2022-0217
    [3]
    吴玲, 娄岩, 侯欣宜, 等. 2-μm MOPA结构全光纤激光器输出特性研究[J]. 中国光学(中英文),2023,16(2):399-406. doi: 10.37188/CO.2022-0191

    WU L, LOU Y, HOU X Y, et al. Output characteristics of an all-fiber laser with a 2-μm MOPA structure[J]. Chinese Optics, 2023, 16(2): 399-406. doi: 10.37188/CO.2022-0191
    [4]
    CORNACCHIA F, DI LIETO A, MARONI P, et al. A cw room-temperature Ho, Tm: YLF laser pumped at 1.682 μm[J]. Applied Physics B, 2001, 73(3): 191-194. doi: 10.1007/s003400100640
    [5]
    WANG Y, SHEN D Y, CHEN H, et al. Highly efficient Tm: YAG ceramic laser resonantly pumped at 1617 nm[J]. Optics Letters, 2011, 36(23): 4485-4487. doi: 10.1364/OL.36.004485
    [6]
    ANTIPOV O, NOVIKOV A, LARIN S, et al. Highly efficient 2 μm CW and Q-switched Tm3+: Lu2O3 ceramics lasers in-band pumped by a Raman-shifted erbium fiber laser at 1670 nm[J]. Optics Letters, 2016, 41(10): 2298-2301. doi: 10.1364/OL.41.002298
    [7]
    侯晓君, 肖薇, 李永锟, 等. 1645nm陶瓷激光共振泵浦Tm: CaYAlO4激光器[J]. 激光与红外,2016,46(1):44-47. doi: 10.3969/j.issn.1001-5078.2016.01.008

    HOU X J, XIAO W, LI Y K, et al. 1645 nm ceramic laser resonantly pumped Tm: CaYAlO4 laser[J]. Laser & Infrared, 2016, 46(1): 44-47. (in Chinese). doi: 10.3969/j.issn.1001-5078.2016.01.008
    [8]
    YAO W C, WU F, ZHAO Y G, et al. Highly efficient Tm: CaYAlO4 laser in-band pumped by a Raman fiber laser at 1.7 μm[J]. Applied Optics, 2016, 55(14): 3730-3733. doi: 10.1364/AO.55.003730
    [9]
    丁宇, 苗宇, 蔡军, 等. 高效率连续波运转Tm: Y2O3中红外固体激光器(特邀)[J]. 光电技术应用,2021,36(5):53-56,65. doi: 10.3969/j.issn.1673-1255.2021.05.009

    DING Y, MIAO Y, CAI J, et al. High efficiency continuous wave Tm: Y2O3 mid-infrared solid laser (Invited)[J]. Electro-Optic Technology Application, 2021, 36(5): 53-56,65. (in Chinese). doi: 10.3969/j.issn.1673-1255.2021.05.009
    [10]
    王皖燕, 严秀莉, 周健飞, 等. 浮区法生长Tm3+: CaYAlO4晶体的研究[J]. 人工晶体学报,2000,29(S1):92.

    WANG W Y, YAN X L, ZHOU J F, et al. Study on single crystal growth of Tm3+: CaYAlO4 by floating zone method[J]. Journal of Synthetic Crystals, 2000, 29(S1): 92. (in Chinese).
    [11]
    QIN Z P, LIU J G, XIE G Q, et al. Spectroscopic characteristics and laser performance of Tm: CaYAlO4 crystal[J]. Laser Physics, 2013, 23(10): 105806. doi: 10.1088/1054-660X/23/10/105806
    [12]
    陈晨, 许强, 孙锐, 等. 调Q锁模运转的全固态Tm: LuAG陶瓷激光器[J]. 红外与激光工程,2021,50(4):20190563. doi: 10.3788/IRLA20190563

    CHEN CH, XU Q, SUN R, et al. Q-switched mode-locked all-solid-state Tm: LuAG ceramic laser[J]. Infrared and Laser Engineering, 2021, 50(4): 20190563. (in Chinese). doi: 10.3788/IRLA20190563
    [13]
    孙锐, 陈晨, 令维军, 等. 2017 nm和2029 nm双波长调 Q锁模Tm: LuAG激光器[J]. 光学学报,2019,39(12):1214004. doi: 10.3788/AOS201939.1214004

    SUN R, CHEN CH, LING W J, et al. Dual-wavelength passively Q-switched mode-locked Tm: LuAG laser operating at 2017 nm and 2029 nm[J]. Acta Optica Sinica, 2019, 39(12): 1214004. (in Chinese). doi: 10.3788/AOS201939.1214004
    [14]
    袁振, 令维军, 陈晨, 等. 高单脉冲能量被动调Q锁模Tm, Ho: LLF激光器[J]. 红外与激光工程,2021,50(8):20210349. doi: 10.3788/IRLA20210349

    YUAN ZH, LING W J, CHEN CH, et al. High single pulse energy passively Q-switched mode-locked Tm, Ho: LLF laser[J]. Infrared and Laser Engineering, 2021, 50(8): 20210349. (in Chinese). doi: 10.3788/IRLA20210349
    [15]
    张明霞, 周珑, 令维军, 等. 调 Q锁模运转的Tm: ZBLAN薄片激光器[J]. 激光与光电子学进展,2022,59(0):0114011.

    ZHANG M X, ZHOU L, LING W J, et al. Q-switched mode-locked thin-disk Tm: ZBLAN laser[J]. Laser & Optoelectronics Progress, 2022, 59(0): 0114011.
    [16]
    孙锐, 令维军, 陈晨, 等. 2089 nm调 Q锁模Tm, Ho: CaYAlO4激光器[J]. 发光学报,2020,41(3):301-307. doi: 10.3788/fgxb20204103.0301

    SUN R, LING W J, CHEN CH, et al. Passively Q-switched mode-locked Tm, Ho: CaYAlO4 laser operating at 2089 nm[J]. Chinese Journal of Luminescence, 2020, 41(3): 301-307. (in Chinese). doi: 10.3788/fgxb20204103.0301
    [17]
    ZHOU W, XU X D, XU R, et al. Watt-level broadly wavelength tunable mode-locked solid-state laser in the 2 μm water absorption region[J]. Photonics Research, 2017, 5(6): 583-587. doi: 10.1364/PRJ.5.000583
    [18]
    KONG L CH, XIE G Q, QIN ZH P, et al. Diode-pumped mode-locked femtosecond 2-µm Tm: CaYAlO4 laser[J]. arXiv preprint arXiv: 1707.03818, 2017. (查阅网上资料, 未能确认文献类型, 请确认文献类型及格式是否正确) .

    KONG L CH, XIE G Q, QIN ZH P, et al.. Diode-pumped mode-locked femtosecond 2-µm Tm: CaYAlO4 laser[J]. arXiv preprint arXiv: 1707.03818, 2017. (查阅网上资料, 未能确认文献类型, 请确认文献类型及格式是否正确).
    [19]
    WANG L, CHEN W D, ZHAO Y G, et al. Sub-50 fs pulse generation from a SESAM mode-locked Tm, Ho-codoped calcium aluminate laser[J]. Optics Letters, 2021, 46(11): 2642-2645. doi: 10.1364/OL.426113
    [20]
    张明霞, 袁振, 杜晓娟, 等. 被动调 Q锁模运转Tm: LuScO3陶瓷激光器特性[J]. 发光学报,2021,42(7):1049-1056. doi: 10.37188/CJL.20210165

    ZHANG M X, YUAN ZH, DU X J, et al. Characteristics of passively Q-switched mode locked Tm: LuScO3 ceramic laser[J]. Chinese Journal of Luminescence, 2021, 42(7): 1049-1056. (in Chinese). doi: 10.37188/CJL.20210165
    [21]
    WANG Y CH, LOIKO P, ZHAO Y G, et al. Polarized spectroscopy and SESAM mode-locking of Tm, Ho: CALGO[J]. Optics Express, 2022, 30(5): 7883-7893. doi: 10.1364/OE.449626
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(96) PDF downloads(10) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return