Volume 17 Issue 3
May  2024
Turn off MathJax
Article Contents
ZHANG Ye-yu, LIU Ting, HUANG Jian-wei, HUANG Xue-zhi, CHEN Ming-jie. Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio[J]. Chinese Optics, 2024, 17(3): 528-537. doi: 10.37188/CO.2023-0160
Citation: ZHANG Ye-yu, LIU Ting, HUANG Jian-wei, HUANG Xue-zhi, CHEN Ming-jie. Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio[J]. Chinese Optics, 2024, 17(3): 528-537. doi: 10.37188/CO.2023-0160

Capillary liquid-core optical fiber temperature sensor based on fluorescence intensity ratio

doi: 10.37188/CO.2023-0160
Funds:  Supported by National Natural Science Foundation of China (No. 62075067, No. 61505057); Promotion Program for Young and Middle-aged Teacher in Science and Technology Research of Huaqiao University (No. ZQN-PY603)
More Information
  • Corresponding author: liut14@hqu.edu.cn
  • Received Date: 13 Sep 2023
  • Rev Recd Date: 09 Oct 2023
  • Accepted Date: 24 Nov 2023
  • Available Online: 16 Jan 2024
  • Aiming to the problem of the complicated preparation of existing optical fiber fluorescence temperature sensing probes, we propose a simple, cost-effective, and high-performance optical fiber fluorescence temperature sensor based on a capillary liquid core. Firstly, a mixed solution consisting of temperature-sensitive rhodamine B and temperature-insensitive rhodamine 123 was used as the temperature-sensitive material and encapsulated in a stainless-steel capillary to prepare a sensing probe. The ratio of the fluorescence emission peak intensities of the two dyes was utilized for temperature sensing. Subsequently, the sensing probe’s mixed solution concentration and capillary structural parameters were optimized. Then, the performance of the sensor was tested. Finally, the sensor was applied to real-life temperature measurements. The experimental results demonstrate that the sensor has a temperature response range of 30−70 °C and that there is a quadratic correlation between the fluorescence intensity ratio and the temperature, with the fitted correlation coefficient as high as 0.9984. The sensor exhibits excellent accuracy, repeatability, and stability, with more than three months of service time. Moreover, it can be well-utilized to detect temperature in daily life. The optical fiber fluorescence temperature sensor shows significant potential for real-time monitoring and remote detection applications.

     

  • loading
  • [1]
    SHIMADA K, TAKASHIMA H, WANG R P, et al. Capacitance temperature sensor using ferroelectric (Sr0.95Ca0.05)TiO3 perovskite[J]. Ferroelectrics, 2006, 331(1): 141-145. doi: 10.1080/00150190600737701
    [2]
    薛光辉, 柴敬轩. 热电偶传感器温控系统误差研究[J]. 中国测试,2019,45(9):100-104. doi: 10.11857/j.issn.1674-5124.2018100039

    XUE G H, CHAI J X. Temperature control error research based on thermocouple sensor[J]. China Measurement & Testing Technology, 2019, 45(9): 100-104. (in Chinese). doi: 10.11857/j.issn.1674-5124.2018100039
    [3]
    LEE J M, CHO I T, LEE J H, et al. Enhancement of temperature sensitivity for metal-insulator-semiconductor temperature sensors by using Bi2Mg2/3Nb4/3O7 film[J]. Japanese Journal of Applied Physics, 2012, 51(8R): 080206. doi: 10.1143/JJAP.51.080206
    [4]
    BANG J, LEE W S, PARK B, et al. Highly sensitive temperature sensor: ligand-treated Ag nanocrystal thin films on PDMS with thermal expansion strategy[J]. Advanced Functional Materials, 2019, 29(32): 1903047. doi: 10.1002/adfm.201903047
    [5]
    LEE Y T, CHOI W J, CHAE Y C. Resistor-based temperature sensors: a technical review[J]. IDEC Journal of Integrated Circuits and Systems, 2021, 7(1): 24-29.
    [6]
    YANG Z R, YUAN W H, YU CH Y. Hollow core Bragg fiber-based sensor for simultaneous measurement of curvature and temperature[J]. Sensors, 2021, 21(23): 7956. doi: 10.3390/s21237956
    [7]
    PENG G L, HE J, YANG SH P, et al. Application of the fiber-optic distributed temperature sensing for monitoring the liquid level of producing oil wells[J]. Measurement, 2014, 58: 130-137. doi: 10.1016/j.measurement.2014.08.012
    [8]
    ROMAN M, ZHU CH, O’MALLEY R J, et al. Distributed fiber-optic sensing with low bending loss based on thin-core fiber[J]. IEEE Sensors Journal, 2021, 21(6): 7672-7680. doi: 10.1109/JSEN.2021.3050702
    [9]
    MILIOU A. In-fiber interferometric-based sensors: overview and recent advances[J]. Photonics, 2021, 8(7): 265. doi: 10.3390/photonics8070265
    [10]
    ZHANG Y, LIU ZH, LI Y, et al. Electrospun fibers embedded with microcrystal for optical temperature sensing[J]. Journal of Alloys and Compounds, 2021, 855: 157410. doi: 10.1016/j.jallcom.2020.157410
    [11]
    YANG K, XU R, MENG Q Y, et al. Er3+/Yb3+ co-doped TeO2–ZnO–ZnF2–La2O3 glass with a high fluorescence intensity ratio for an all-fiber temperature sensor[J]. Journal of Luminescence, 2020, 222: 117145. doi: 10.1016/j.jlumin.2020.117145
    [12]
    KHLAIFI H, ZRELLI A, EZZEDINE T. Optical fiber sensors in border detection application: temperature, strain and pressure distinguished detection using fiber Bragg grating and fluorescence intensity ratio[J]. Optik, 2021, 229: 166257. doi: 10.1016/j.ijleo.2021.166257
    [13]
    李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624. doi: 10.37188/CO.2021-0219

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese). doi: 10.37188/CO.2021-0219
    [14]
    ZHANG H, YE J T, WANG X L, et al. Highly reliable all-fiber temperature sensor based on the fluorescence intensity ratio (FIR) technique in Er3+/Yb3+ co-doped NaYF4 phosphors[J]. Journal of Materials Chemistry C, 2019, 7(48): 15269-15275. doi: 10.1039/C9TC05011F
    [15]
    REN X T, GAO J, SHI H N, et al. A flexible and portable all-fiber temperature sensor based on the upconversion luminescence of octahedral NaBi(WO4)2: Er3+/Yb3+ phosphors[J]. Dalton Transactions, 2021, 50(3): 917-925. doi: 10.1039/D0DT03762A
    [16]
    ZHANG M, LI A ZH, YU J B, et al. In-fiber temperature sensor based on green up-conversion luminescence in an Er3+-Yb3+ co-doped tellurite glass microsphere[J]. Optics Letters, 2019, 44(13): 3214-3217. doi: 10.1364/OL.44.003214
    [17]
    MAI Y F, LI B Y, ZHOU G Y, et al. Research on temperature sensor using rhodamine6G film coated microstructure optical fiber[J]. IEEE Sensors Journal, 2020, 20(1): 202-207. doi: 10.1109/JSEN.2019.2938766
    [18]
    LI H, ZHANG Y D, SHAO L, et al. Luminescence probe for temperature sensor based on fluorescence intensity ratio[J]. Optical Materials Express, 2017, 7(3): 1077-1083. doi: 10.1364/OME.7.001077
    [19]
    JIANG X F, LIN CH, HUANG Y Q, et al. Hybrid fiber optic sensor, based on the Fabry-Perot interference, assisted with fluorescent material for the simultaneous measurement of temperature and pressure[J]. Sensors (Basel), 2019, 19(5): 1097. doi: 10.3390/s19051097
    [20]
    ZHAO F, KIM J. The Effect of temperature on photoluminescence enhancement of quantum dots in brain slices[J]. Journal of Nanoscience and Nanotechnology, 2017, 17(4): 2606-2609. doi: 10.1166/jnn.2017.13332
    [21]
    SUN S S, ZHANG J H, Wang ZH, et al. Anomalous thermally-activated NIR emission of ESIPT modulated Nd-complexes for optical fiber sensing devices[J]. Chemical Communications, 2018, 54(49): 6304-6307. doi: 10.1039/C8CC02345J
    [22]
    王玉田, 胡俏丽, 石军彦. 基于荧光机理的光纤温度测量仪[J]. 光学学报,2010,30(3):655-659. doi: 10.3788/AOS20103003.0655

    WANG Y T, HU Q L, SHI J Y. Optical fiber thermometer based on fluorescence mechanism[J]. Acta Optica Sinica, 2010, 30(3): 655-659. (in Chinese). doi: 10.3788/AOS20103003.0655
    [23]
    ZHAO Y T, PANG CH L, WEN ZH, et al. A microfiber temperature sensor based on fluorescence lifetime[J]. Optics Communications, 2018, 426: 231-236. doi: 10.1016/j.optcom.2018.05.025
    [24]
    WU J, YIN X J, WANG W Y, et al. All-fiber reflecting temperature probe based on the simplified hollow-core photonic crystal fiber filled with aqueous quantum dot solution[J]. Applied Optics, 2016, 55(5): 974-978. doi: 10.1364/AO.55.000974
    [25]
    ZHAO Y, TONG R J, CHEN M Q, et al. Fluorescence temperature sensor based on GQDs solution encapsulated in hollow core fiber[J]. IEEE Photonics Technology Letters, 2017, 29(18): 1544-1547. doi: 10.1109/LPT.2017.2723624
    [26]
    曹汇敏, 李发光, 戴乐荣, 等. 同步监测氧气和温度的新型便携式传感器[J]. 光学学报,2019,39(6):0628004. doi: 10.3788/AOS201939.0628004

    CAO H M, LI F G, DAI L R, et al. Novel portable sensor for simultaneous monitoring of oxygen and temperature[J]. Acta Optica Sinica, 2019, 39(6): 0628004. (in Chinese). doi: 10.3788/AOS201939.0628004
    [27]
    KUMAR R, BINETTI L, NGUYEN T H, et al. Optical fibre thermometry using ratiometric green emission of an upconverting nanoparticle-polydimethylsiloxane composite[J]. Sensors and Actuators A:Physical, 2020, 312: 112083. doi: 10.1016/j.sna.2020.112083
    [28]
    李淑雅, 魏超, 赵晗, 等. 检测汞离子的比色-荧光双通道探针的设计合成及应用[J]. 分析化学,2023,51(2):204-210.

    LI SH Y, WEI CH, ZHAO H, et al. Synthesis and application of colorimetric and fluorescent dual mode probe for detection of mercury ion[J]. Chinese Journal of Analytical Chemistry, 2023, 51(2): 204-210. (in Chinese).
    [29]
    侯淑华, 李仕琦, 汤立军. 新型水溶性罗丹明类荧光探针的合成及其对游离3价金属离子的识别[J]. 应用化学,2022,39(2):241-246.

    HOU SH H, LI SH Q, TANG L J. Synthesis of a novel water-soluble rhodamine-based fluorescent probe and its selective detection of free trivalent ions[J]. Chinese Journal of Applied Chemistry, 2022, 39(2): 241-246. (in Chinese).
    [30]
    陈阳, 赵杰, 张嘉惠, 等. 罗丹明B-锆基金属有机框架复合材料高选择性荧光检测铁离子[J]. 分析化学,2021,49(4):642-651.

    CHEN Y, ZHAO J, ZHANG J H, et al. Integration of rhodamine b into zirconium-based metal-organic framework for selective detection of ferric ion[J]. Chinese Journal of Analytical Chemistry, 2021, 49(4): 642-651. (in Chinese).
    [31]
    PANCHUK-VOLOSHINA N, HAUGLAND R P, BISHOP-STEWART J, et al. Alexa dyes, a series of new fluorescent dyes that yield exceptionally bright, photostable conjugates[J]. Journal of Histochemistry & Cytochemistry, 1999, 47(9): 1179-1788.
    [32]
    ZHANG T T, WANG ZH J, XIANG H J, et al. Biocompatible superparamagnetic europium-doped iron oxide nanoparticle clusters as multifunctional nanoprobes for multimodal in vivo imaging[J]. ACS Applied Materials & Interfaces, 2021, 13(29): 33850-33861.
    [33]
    BARRANCO A, GROENING P. Fluorescent plasma nanocomposite thin films containing nonaggregated rhodamine 6G laser dye molecules[J]. Langmuir, 2006, 22(16): 6719-6722. doi: 10.1021/la053304d
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(158) PDF downloads(39) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return