Volume 17 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
AN Qi-chang, WU Xiao-xia, LIU Xin-yue, WANG Xun, LI Hong-wen. A benchmark construction method for large aperture circular segmented optical systems[J]. Chinese Optics, 2024, 17(2): 390-397. doi: 10.37188/CO.2023-0149
Citation: AN Qi-chang, WU Xiao-xia, LIU Xin-yue, WANG Xun, LI Hong-wen. A benchmark construction method for large aperture circular segmented optical systems[J]. Chinese Optics, 2024, 17(2): 390-397. doi: 10.37188/CO.2023-0149

A benchmark construction method for large aperture circular segmented optical systems

doi: 10.37188/CO.2023-0149
Funds:  Supported by Jilin Science and Technology Development Program (No. 20220402032GH)
More Information
  • Corresponding author: anjj@mail.ustc.edu.cn
  • Received Date: 28 Aug 2023
  • Rev Recd Date: 12 Sep 2023
  • Available Online: 05 Dec 2023
  • To realize integration detection and construct stability maintaining benchmark for large apertures of segmented telescopes, we propose a benchmark construction method. In this study, we use local pupil projection to perform pupil alignment mapping. In addition, we construct a system confocal spatial benchmark using a microlens array. On the basis of annular whole-body control mode, a joint analysis method of confocal and curvature radius enables joint adjustment of the curvature radius and system alignment. Finally, the stripe envelope formed by white light interference is used for coarse common phases detection, and the channel spectral method is used to obtain precise connection between coarse and fine common phases. Additionally, the spatial confocal reference positioning exhibits an accuracy of less than 125 μm, and the common phase reference has a coverage range better than 0.5 μm within a 20-μm-range. Furthermore, the uncertainty of the spectral reference is less than 5%. We have effectively improved the accuracy of optical system in-situ measurement by achieving hierarchical and multimodal suppression of disturbances from different spatiotemporal features. We have shortened the length of the traceability chain and increased the efficiency and accuracy of detection by utilizing the new method of common reference in-situ measurement.

     

  • loading
  • [1]
    GOULLIOUD R, MCELWAIN M, BURDICK G M, et al. OpTIIX: An ISS-based testbed paving the roadmap toward a next generation, large aperture UV/optical space telescope[R]. 2012.
    [2]
    BASU S. Conceptual design of an autonomously assembled space telescope (AAST)[J]. Proceedings of SPIE, 2004, 5166: 98-112. doi: 10.1117/12.516464
    [3]
    BOLCAR M R. The large UV/optical/infrared surveyor (LUVOIR): Decadal mission concept technology development overview[J]. Proceedings of SPIE, 2017, 10398: 103980A.
    [4]
    SIVARAMAKRISHNAN A, TUTHILL P, LLOYD J P, et al. The near infrared imager and Slitless spectrograph for the James Webb space telescope. IV. Aperture masking interferometry[J]. Publications of the Astronomical Society of the Pacific, 2023, 135(1043): 015003. doi: 10.1088/1538-3873/acaebd
    [5]
    CANUTO E, MUSSO F. Active angular stabilization of the GAIA space telescope through laser interferometry[J]. IFAC Proceedings Volumes, 2004, 37(6): 955-960. doi: 10.1016/S1474-6670(17)32302-9
    [6]
    KIM D W, ESPARZA M, QUACH H, et al. Optical technology for future telescopes[J]. Proceedings of SPIE, 2021, 11761: 1176103.
    [7]
    李斌, 杨阿坤, 邹吉平. 基于宽波段光源拼接镜新型共相检测技术研究[J]. 中国光学(中英文),2022,15(4):797-805. doi: 10.37188/CO.2021-0234

    LI B, YANG A K, ZOU J P. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. (in Chinese). doi: 10.37188/CO.2021-0234
    [8]
    BIASI R, MANETTI M, ANDRIGHETTONI M, et al. E-ELT M4 adaptive unit final design and construction: a progress report[J]. Proceedings of SPIE, 2016, 9909: 99097Y. doi: 10.1117/12.2234735
    [9]
    AN Q CH, WU X X, LIN X D, et al. Alignment of DECam-like large survey telescope for real-time active optics and error analysis[J]. Optics Communications, 2021, 484: 126685. doi: 10.1016/j.optcom.2020.126685
    [10]
    AN Q CH, ZHANG H F, WU X X, et al. Curvature sensing-based pupil alignment method for large-aperture telescopes[J]. IEEE Photonics Journal, 2023, 15(1): 6800705.
    [11]
    DAI Y CH, YANG D H, JIN ZH Y, et al. Active control of the Chinese giant solar telescope[J]. Proceedings of SPIE, 2014, 9145: 914550.
    [12]
    WU Z L, KANG I, YAO Y D, et al. Three-dimensional nanoscale reduced-angle ptycho-tomographic imaging with deep learning (RAPID)[J]. eLight, 2023, 3: 7. doi: 10.1186/s43593-022-00037-9
    [13]
    SIROHI R. Shearography and its applications—A chronological review[J]. Light:Advanced Manufacturing, 2022, 3: 1.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(158) PDF downloads(43) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return