Turn off MathJax
Article Contents
LIU Zhi, JIANG Qing-fang, LIU Shu-tong, TIAN Shao-qian, LIU Xian-zhu, YU Jia-xin, ZHAO Jian-tong, YAO Haifeng, DONG Ke-yan. Research progress of space laser communication networking technology[J]. Chinese Optics. doi: 10.37188/CO.2023-0140
Citation: LIU Zhi, JIANG Qing-fang, LIU Shu-tong, TIAN Shao-qian, LIU Xian-zhu, YU Jia-xin, ZHAO Jian-tong, YAO Haifeng, DONG Ke-yan. Research progress of space laser communication networking technology[J]. Chinese Optics. doi: 10.37188/CO.2023-0140

Research progress of space laser communication networking technology

doi: 10.37188/CO.2023-0140
Funds:  Supported by Ye Qisun Science Foundation of National Natural Science Foundation of China (No. U2141231); Youth Foundation of National Natural Science Foundation of China (No. 62105042)
  • Received Date: 18 Aug 2023
  • Rev Recd Date: 26 Nov 2023
  • Available Online: 05 Feb 2024
  • Laser communication utilizes light waves as the transmission medium. It offers many advantages, including high data rates, expansive bandwidth, compactness, robust interference resistance, and superior confidentiality. It has the critical capability to enable high-speed transmission and secure operation of space information networks. Prominent research institutions have committed to studying a series of challenges that need to be solved in the process of networking laser communication technology, including point-to-multipoint simultaneous laser communication, all-optical switching and forwarding of multi-channel signals within nodes, node dynamic random access, and network topology design. Numerous demonstration and verification experiments have been conducted, with a subset of these research results finding practical applications. Based on the analysis and discussion of space laser communication networking technology, this paper summarizes the development of laser communication networking technology both domestically and internationally, focusing on the application of laser communication networking technology in the fields of satellite constellations, satellite relays, and aviation networks; furthermore, it presents a review of pertinent domestic research methodologies, experimental validations, and technical solutions; finally, it predicts the development trend of laser communication networking technology and applications.

     

  • loading
  • [1]
    姜会林, 安岩, 张雅琳, 等. 空间激光通信现状、发展趋势及关键技术分析[J]. 飞行器测控学报,2015,34(3):207-217.

    JIANG H L, AN Y, ZHANG Y L, et al. Analysis of the status quo, development trend and key technologies of space laser communication[J]. Journal of Spacecraft TT& C Technology, 2015, 34(3): 207-217. (in Chinese).
    [2]
    HEMMATI H. Deep Space Optical Communications[M]. Hoboken: John Wiley & Sons, 2006.
    [3]
    KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96.
    [4]
    HEMMATI H, BISWAS A, DJORDJEVIC I B, et al. Deep-space optical communications: future perspectives and applications[J]. Proceedings of the IEEE, 2011, 99(11): 2020-2039. doi: 10.1109/JPROC.2011.2160609
    [5]
    THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: the robot that won the DARPA grand challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692. doi: 10.1002/rob.20147
    [6]
    SUN L, DU Q H. Physical layer security with its applications in 5G networks: a review[J]. China Communications, 2017, 14(12): 1-14. doi: 10.1109/CC.2017.8246483
    [7]
    RADHAKRISHNAN R, EDMONSON W W, AFGHAH F, et al. Survey of inter-satellite communication for small satellite systems: physical layer to network layer view[J]. IEEE Communications Surveys & Tutorials, 2016, 18(4): 2442-2473.
    [8]
    BILGI M, YUKSEL M. Multi-element free-space-optical spherical structures with intermittent connectivity patterns[C]. IEEE INFOCOM Workshops 2008, IEEE, 2008: 1-4.
    [9]
    VELAZCO J, BOYRAZ O. High data rate inter-satellite omnidirectional optical communicator[C]. 32nd Annual AIAA/USU Conference on Small Satellites, AIAA, 2018: 354-2305.
    [10]
    高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese). doi: 10.37188/CO.2020-0033
    [11]
    SEARCY P, MATSUMORI B A. Five advantages of managed optical communications array (MOCA) technology over other Lasercomm approaches[J]. Proceedings of SPIE, 2021, 11678: 116780Y.
    [12]
    李全超. 基于万向节的机载高精度光电平台机构研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    LI Q CH. Research on mechanism of aerial high-precision optoelectronic platform based on universal joint[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese).
    [13]
    YOU Q, CHEN D G, XIAO X, et al. 10 Gb/s free space optical interconnect with broadcasting capability enabled by a silicon integrated optical phased array[J]. Chinese Optics Letters, 2021, 19(12): 120602. doi: 10.3788/COL202119.120602
    [14]
    HAN R L, SUN J F, HOU P P, et al. Multi-dimensional and large-sized optical phased array for space laser communication[J]. Optics Express, 2022, 30(4): 5026-5037. doi: 10.1364/OE.447351
    [15]
    李盈祉. 硅基光学相控阵芯片的研制及应用研究[D]. 吉林: 吉林大学, 2023.

    LI Y ZH. Research and application of silicon-based optical phased array chip[D]. Jilin: Jilin University, 2023. (in Chinese).
    [16]
    梁知清. 液晶光学相控阵波束指向范围的拓展方法研究[D]. 成都: 电子科技大学, 2022.

    LIANG ZH Q. Research on the expansion method of beam pointing range of liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2022. (in Chinese).
    [17]
    曹汉, 张士元, 穆全全, 等. 基于光控取向技术的液晶光阀系统[J]. 长春理工大学学报(自然科学版),2021,44(3):10-14.

    CAO H, ZHANG SH Y, MU Q Q, et al. Liquid crystal light valve system based on photoalignment[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2021, 44(3): 10-14. (in Chinese).
    [18]
    MATSUMORI B A, SEARCY P. An investigation into the technical and system operational impacts of applying FSO point-to-multipoint communications technology[C]. 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), IEEE, 2022: 248-254.
    [19]
    PRESBY H M, TYSON J A. Point-to-multipoint free-space wireless optical communication system: US, 6445496[P]. 2002-09-03.
    [20]
    SPARROLD S W, UPTON E L, OKOROGU A O. Free space point-to-multipoint optical communication system and apparatus: US, 6912360[P]. 2005-06-28.
    [21]
    史蒂芬·G·兰伯特. 自由空间光通信网络及用于中继节点的方法: 美国, 106341184A[P]. 2017-01-18. .
    [22]
    M·D·马可夫斯基, G·D·科尔曼, W·J·小斯尔卡科, 等. 用于自由空间光通信的激光继电器: 美国, 105284064A[P]. 2016-01-27. .
    [23]
    姜会林, 胡源, 宋延嵩, 等. 空间激光通信组网光端机技术研究[J]. 航天返回与遥感,2011,32(5):52-59.

    JIANG H L, HU Y, SONG Y S, et al. Research on space laser communication network[J]. Spacecraft Recovery & Remote Sensing, 2011, 32(5): 52-59. (in Chinese).
    [24]
    江伦, 胡源, 王超, 等. 一点对多点同时空间激光通信光学系统研究[J]. 光学学报,2016,36(5):0506001. doi: 10.3788/AOS201636.0506001

    JIANG L, HU Y, WANG CH, et al. Optical system in one-point to multi-point simultaneous space laser communications[J]. Acta Optica Sinica, 2016, 36(5): 0506001. (in Chinese). doi: 10.3788/AOS201636.0506001
    [25]
    姜会林, 胡源, 丁莹, 等. 空间激光通信组网光学原理研究[J]. 光学学报,2012,32(10):1006003. doi: 10.3788/AOS201232.1006003

    JIANG H L, HU Y, DING Y, et al. Optical principle research of space laser communication network[J]. Acta Optica Sinica, 2012, 32(10): 1006003. (in Chinese). doi: 10.3788/AOS201232.1006003
    [26]
    郭鸿儒. 基于液晶光学相控阵的多用户捕跟方法研究[D]. 成都: 电子科技大学, 2019.

    GUO H R. Multi-user acquisition tracking method based on liquid crystal optical phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2019. (in Chinese).
    [27]
    姜会林, 江伦, 宋延嵩, 等. 一点对多点同时空间激光通信光学跟瞄技术研究[J]. 中国激光,2015,42(4):0405008. doi: 10.3788/CJL201542.0405008

    JIANG H L, JIANG L, SONG Y S, et al. Research of optical and APT technology in one-point to multi-point simultaneous space laser communication system[J]. Chinese Journal of Lasers, 2015, 42(4): 0405008. (in Chinese). doi: 10.3788/CJL201542.0405008
    [28]
    HUANG X N, SUH Y L, DUAN T, et al. Simultaneous wavelength and format conversions based on the polarization-insensitive FWM in free-space optical communication network[J]. IEEE Photonics Journal, 2019, 11(1): 6500210.
    [29]
    郏帅威, 汪伟, 谢小平, 等. 空间激光通信网络中的全光数据合路技术研究[J]. 遥测遥控,2022,43(4):70-79.

    JIA SH W, WANG W, XIE X P, et al. Research on the all-optical data aggregation technology in the space laser communication network[J]. Journal of Telemetry, Tracking and Command, 2022, 43(4): 70-79. (in Chinese).
    [30]
    陆红强, 汪伟, 黄新宁, 等. 下一代空间激光骨干网络全光处理技术[J]. 遥测遥控,2022,43(6):56-63.

    LU H Q, WANG W, HUANG X N, et al. All-optical processing techniques for next-generation laser-based space backbone-networks[J]. Journal of Telemetry, Tracking and Command, 2022, 43(6): 56-63. (in Chinese).
    [31]
    孟佳成, 谢宁波, 白兆峰, 等. 面向卫星互联网的星载光交换技术[J]. 天地一体化信息网络,2022,3(2):47-55.

    MENG J CH, XIE N B, BAI ZH F, et al. Spaceborne optical switching technology for satellite internet[J]. Space-Integrated-Ground Information Networks, 2022, 3(2): 47-55. (in Chinese).
    [32]
    付强, 姜会林, 王晓曼, 等. 空间激光通信研究现状及发展趋势[J]. 中国光学,2012,5(2):116-125.

    FU Q, JIANG H L, WANG X M, et al. Research status and development trend of space laser communication[J]. Chinese Optics, 2012, 5(2): 116-125. (in Chinese).
    [33]
    中国科学院. 西安光机所星载光交换技术成功在轨验证[EB/OL]. 中国科学院(2023-10-08). https://www.cas.cn/syky/202310/t20231008_4973365.shtml. .
    [34]
    高铎瑞, 谢壮, 马榕, 等. 卫星激光通信发展现状与趋势分析(特邀)[J]. 光子学报,2021,50(4):0406001.

    GAO D R, XIE ZH, MA R, et al. Development current status and trend analysis of satellite laser communication (invited)[J]. Acta Photonica Sinica, 2021, 50(4): 0406001. (in Chinese).
    [35]
    杨成武, 谌明, 刘向南, 等. 小卫星激光通信终端技术现状与发展趋势[J]. 遥测遥控,2021,42(3):1-7.

    YANG CH W, CHEN M, LIU X N, et al. Current status and development trends of minisatellite laser communication terminal technology[J]. Journal of Telemetry, Tracking and Command, 2021, 42(3): 1-7. (in Chinese).
    [36]
    HEINE F, SÁNCHEZ-TERCERO A, MARTIN-PIMENTEL P, et al. In orbit perfomance of tesat LCTs[J]. Proceedings of SPIE, 2019, 10910: 109100U.
    [37]
    HAAN H, SIEMENS C. Airborne optical communication terminal: first successful link from Tenerife to the GEO Alphasat[J]. Proceedings of SPIE, 2019, 11133: 1113306.
    [38]
    ROSE T S, ROWEN D W, LALUMONDIERE S, et al. Optical communications downlink from a 1.5U CubeSat: OCSD program[J]. Proceedings of SPIE, 2019, 11180: 111800J.
    [39]
    郑运强, 刘欢, 孟佳成, 等. 空基激光通信研究进展和趋势以及关键技术[J]. 红外与激光工程,2022,51(6):20210475. doi: 10.3788/IRLA20210475

    ZHENG Y Q, LIU H, MENG J CH, et al. Development status, trend and key technologies of air-based laser communication[J]. Infrared and Laser Engineering, 2022, 51(6): 20210475. (in Chinese). doi: 10.3788/IRLA20210475
    [40]
    李贺武, 吴茜, 徐恪, 等. 天地一体化网络研究进展与趋势[J]. 科技导报,2016,34(14):95-106.

    LI H W, WU Q, XU K, et al. Progress and tendency of space and earth integrated network[J]. Science & Technology Review, 2016, 34(14): 95-106. (in Chinese).
    [41]
    ZECH H, HEINE F, TRÖNDLE D, et al. LCT for EDRS: LEO to GEO optical communications at 1, 8 Gbps between Alphasat and sentinel 1a[J]. Proceedings of SPIE, 2015, 9647: 96470J.
    [42]
    OSORO O B, OUGHTON E J. A techno-economic framework for satellite networks applied to low earth orbit constellations: assessing starlink, OneWeb and Kuiper[J]. IEEE Access, 2021, 9: 141611-141625. doi: 10.1109/ACCESS.2021.3119634
    [43]
    RAINBOW J. SpaceX launches OneWeb Gen 2 technology demonstrator[EB/OL]. SpaceNews(2023-05-20). https://spacenews.com/spacex-launches-oneweb-gen-2-technology-demonstrator/.
    [44]
    VASKO C A, ARAPOGLOU P D, ACAR G, et al. Optical high-speed data network in space-an update on HydRON's system concept[C]. 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), IEEE, 2022: 7-13.
    [45]
    HAUSCHILDT H, ELIA C, JONES A, et al. ESAs ScyLight programme: activities and status of the high throughput optical network "HydRON"[J]. Proceedings of SPIE, 2019, 11180: 111800G.
    [46]
    FREEMAN R H. Notional satellite architectures of military (GEO-Earth) versus space exploration (GEO-Mars)[EB/OL]. MilsatMagazine(2020-10). http://www.milsatmagazine.com/story.php?number=500837950. .
    [47]
    FREEMAN R H. Notional satellite architectures of military (GEO-Earth) versus space exploration (GEO-Mars)[EB/OL]. MilsatMagazine(2020-10). http://www.milsatmagazine.com/story.php?number=500837950. .
    [48]
    DARPA. DARPA’s mandrake 2 satellites: communicating at the speed of light[EB/OL]. (2022-08-25). https://breakingdefense.com/2022/08/darpas-mandrake-2-satellites-communicating-at-the-speed-of-light/.
    [49]
    United States Government. Space development agency successfully launches tranche 0 satellites[EB/OL]. U. S. Department of Defense(2023-04-02). https://www.defense.gov/News/Releases/Release/Article/3348974/space-development-agency-successfully-launches-tranche-0-satellites/.
    [50]
    U. S. Department of Defense. Space development agency makes awards for 126 satellites to build tranche 1 transport layer[EB/OL]. (2022-02-28). https://www.defense.gov/News/Releases/Release/Article/2948229/space-development-agency-makes-awards-for-126-satellites-to-build-tranche-1-tra/.
    [51]
    ERWIN S. Space development agency issues draft solicitation for 100 satellites[EB/OL]. SpaceNews(2023-05-12). https://spacenews.com/space-development-agency-issues-draft-solicitation-for-100-satellites/.
    [52]
    MARROW M. SDA issues draft solicitation for tranche 2 transport layer satellites[N]. Inside Defense, 2023-02-02. (未能确认本条文献类型修改是否正确, 未找到版次信息, 请核对) .
    [53]
    DARPA. Space-based adaptive communications node (Space-BACN)[EB/OL].https://www.darpa.mil/work-with-us/space-based-adaptive-communications-node. .
    [54]
    科技日报. 基于激光通信互联 遥感小卫星星座建成[EB/OL]. (2023-01-16). http://www.xinhuanet.com/tech/20230116/46f74613b1e94a80af9091ded3ac8cf6/c.html?share_token=0447b499-b3da-43f5-9934-a6841ac29c52. .
    [55]
    KARAFOLAS N, BARONI S. Optical satellite networks[J]. Journal of Lightwave Technology, 2000, 18(12): 1792-1806. doi: 10.1109/50.908734
    [56]
    LIAO SH K, YONG H L, LIU CH, et al. Long-distance free-space quantum key distribution in daylight towards inter-satellite communication[J]. Nature Photonics, 2017, 11(8): 509-513. doi: 10.1038/nphoton.2017.116
    [57]
    HERATH H M V R. Starlink: a solution to the digital connectivity divide in education in the global South[J]. arXiv: 2110.09225, 2021. (不确定文献类型及格式是否正确, 请核对) .
    [58]
    CHAUDHRY A U, YANIKOMEROGLU H. Free space optics for next-generation satellite networks[J]. IEEE Consumer Electronics Magazine, 2021, 10(6): 21-31. doi: 10.1109/MCE.2020.3029772
    [59]
    BRODKIN J. SpaceX adds laser links to Starlink satellites to serve earth’s polar areas[EB/OL]. (2021-01-26). https://arstechnica.com/information-technology/2021/01/spacex-adds-laser-links-to-starlink-satellites-to-serve-earths-polar-areas/.
    [60]
    WASSELL K. SpaceX ramps up Starlink internet speeds with thousands of space lasers[EB/OL]. (2023-10-02). https://cordcuttersnews.com/spacex-ramps-up-starlink-internet-speeds-with-thousands-of-space-lasers/.
    [61]
    NAGENDRA N P, KUNAR K, BETTIOL L, et al. An analysis of the applicability of space debris mitigation guidelines to the commercial small-satellite industry[C]. 66th International Astronautical Congress, 2015: 1-18. .
    [62]
    GREGORY M, HEINE F, KÄMPFNER H, et al. TESAT laser communication terminal performance results on 5.6Gbit coherent inter satellite and satellite to ground links[J]. Proceedings of SPIE, 2017, 10565: 105651F.
    [63]
    JEWETT R. Mynaric to roll out next-generation optical link terminal[EB/OL]. Via Satellite(2021-08-26). https://www.satellitetoday.com/innovation/2021/08/26/mynaric-to-roll-out-next-generation-optical-link-terminal/.
    [64]
    JEWETT R. Mynaric to supply Raytheon with optical terminals for SDA program[EB/OL]. Via Satellite(2023-06-22). https://www.satellitetoday.com/government-military/2023/06/22/mynaric-to-supply-raytheon-with-optical-terminals-for-sda-program/.
    [65]
    ERWIN S. Boeing unveils WGS-11 design with new military payload[EB/OL]. SpaceNews(2024-04-13). https://spacenews.com/boeing-unveils-wgs-11-design-with-new-military-payload/.
    [66]
    PTASINSKI J N, CONGTANG Y. The automated digital network system (ADNS) interface to transformational satellite communications system (TSAT)[C]. MILCOM 2007 - IEEE Military Communications Conference, IEEE, 2007: 1-5.
    [67]
    董全睿, 陈涛, 高世杰, 等. 星载激光通信技术研究进展[J]. 中国光学,2019,12(6):1260-1270. doi: 10.3788/co.20191206.1260

    DONG Q R, CHEN T, GAO SH J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270. (in Chinese). doi: 10.3788/co.20191206.1260
    [68]
    ISRAEL D J, EDWARDS B L, STAREN J W. Laser communications relay demonstration (LCRD) update and the path towards optical relay operations[C]. 2017 IEEE Aerospace Conference, IEEE, 2017: 1-6.
    [69]
    高铎瑞, 李天伦, 孙悦, 等. 空间激光通信最新进展与发展趋势[J]. 中国光学,2018,11(6):901-913. doi: 10.3788/co.20181106.0901

    GAO D R, LI T L, SUN Y, et al. Latest developments and trends of space laser communication[J]. Chinese Optics, 2018, 11(6): 901-913. (in Chinese). doi: 10.3788/co.20181106.0901
    [70]
    TINGLEY B. The air force wants laser communication pods to securely link fighter aircraft with satellites[EB/OL]. The Drive - The War Zone(2021-01-26). https://www.thedrive.com/the-war-zone/44037/the-air-force-wants-laser-communication-pods-to-securely-link-fighter-aircraft-with-satellites.
    [71]
    NASA. NASA invites public to share launch of laser communications demonstration[EB/OL]. NASA(2023-09-07). https://www.nasa.gov/missions/nasa-invites-public-to-share-launch-of-laser-communications-demonstration/.
    [72]
    NASA. Integrated LCRD LEO user modem and amplifier terminal[EB/OL]. NASA(2018-06-15). https://www.nasa.gov/directorates/heo/scan/opticalcommunications/illuma-t.
    [73]
    SCHAUER K. Laser terminal bound for space station arrives at NASA Goddard for testing[EB/OL]. NASA Feature(2022-07-18). https://www.nasa.gov/image-feature/goddard/2022/laser-terminal-bound-for-space-station-arrives-at-nasa-goddard-for-testing.
    [74]
    NASA. Optical communications and sensor demonstration (OCSD-2)[EB/OL]. NASA(2023-08-22). https://www.nasa.gov/image-article/optical-communications-sensor-demonstration-ocsd-2/.
    [75]
    PARK E A, CORNWELL D, ISRAEL D. NASA's next generation ≥100 Gbps optical communications relay[C]. 2019 IEEE Aerospace Conference, IEEE, 2019: 1-9.
    [76]
    SpaceNews. Japan launches JDRS-1 optical data relay satellite for military, civilian use[EB/OL]. (2023-09-22). https://spacenews.com/japan-launches-jdrs-1-optical-data-relay-satellite-for-military-civilian-use/.
    [77]
    HAUSCHILDT H, LE GALLOU N, MEZZASOMA S, et al. Global quasi-real-time-services back to Europe: EDRS global[J]. Proceedings of SPIE, 2019, 11180: 111800X.
    [78]
    李锐, 林宝军, 刘迎春, 等. 激光星间链路发展综述: 现状、趋势、展望[J]. 红外与激光工程,2023,52(3):20220393. doi: 10.3788/IRLA20220393

    LI Y, LIN B J, LIU Y CH, et al. Review on laser intersatellite link: current status, trends, and prospects[J]. Infrared and Laser Engineering, 2023, 52(3): 20220393. (in Chinese). doi: 10.3788/IRLA20220393
    [79]
    JEWETT R. Inmarsat, addvalue debut inter-satellite data relay system linking LEO and GEO[EB/OL]. Via Satellite(2020-11-23). https://www.satellitetoday.com/mobility/2020/11/23/inmarsat-addvalue-debut-inter-satellite-data-relay-system-linking-leo-and-geo/.
    [80]
    KAUSHAL H, KADDOUM G. Optical communication in space: challenges and mitigation techniques[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 57-96. .
    [81]
    JUAREZ J C, DWIVEDI A, HAMMONS A R, et al. Free-space optical communications for next-generation military networks[J]. IEEE Communications Magazine, 2006, 44(11): 46-51. doi: 10.1109/MCOM.2006.248164
    [82]
    STOTTS L B, ANDREWS L C, CHERRY P C, et al. Hybrid optical RF airborne communications[J]. Proceedings of the IEEE, 2009, 97(6): 1109-1127. doi: 10.1109/JPROC.2009.2014969
    [83]
    BELOGLAZOV A, ABAWAJY J, BUYYA R. Energy-aware resource allocation heuristics for efficient management of data centers for cloud computing[J]. Future Generation Computer Systems, 2012, 28(5): 755-768. doi: 10.1016/j.future.2011.04.017
    [84]
    Airbus. Airbus and VDL group join forces to produce an airborne laser[EB/OL]. (2023-01-10). https://www.airbus.com/en/newsroom/press-releases/2023-01-airbus-and-vdl-group-join-forces-to-produce-an-airborne-laser.
    [85]
    CHAUDHRY A U, LAMONTAGNE G, YANIKOMEROGLU H. Laser intersatellite link range in free-space optical satellite networks: impact on latency[J]. IEEE Aerospace and Electronic Systems Magazine, 2023, 38(4): 4-13. doi: 10.1109/MAES.2023.3241142
    [86]
    赵尚弘, 魏军, 李勇军, 等. 航空光通信与网络技术[M]. 上海: 上海科学技术出版社, 2020.

    ZHAO SH H, WEI J, LI Y J, et al. Aviation Optical Communication and Networking Technology[M]. Shanghai: Shanghai Scientific & Technical Publishers, 2020. (in Chinese) .
    [87]
    陶源盛, 王兴军, 韩昌灏, 等. 面向空间应用的集成光电子技术[J]. 中国科学: 物理学 力学 天文学, 2021, 51(2): 024201.

    TAO Y SH, WANG X J, HAN CH H, et al. Integrated photonics for space applications[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2021, 51(2): 024201. (in Chinese).
    [88]
    陈东, 仲小清, 邓恒, 等. 宽带卫星通信网络技术发展态势与发展建议[J]. 前瞻科技,2022,1(1):86-93.

    CHWN D, ZHONG X Q, DENG H, et al. Development trend and suggestions of broadband satellite communication network[J]. Science and Technology Foresight, 2022, 1(1): 86-93. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article views(139) PDF downloads(91) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return