Volume 17 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
JIANG Xue, HOU Han, MA Qing-jun, LIN Guan-yu. Detector temperature control system for ultraviolet spectrometer[J]. Chinese Optics, 2024, 17(1): 209-216. doi: 10.37188/CO.2023-0133
Citation: JIANG Xue, HOU Han, MA Qing-jun, LIN Guan-yu. Detector temperature control system for ultraviolet spectrometer[J]. Chinese Optics, 2024, 17(1): 209-216. doi: 10.37188/CO.2023-0133

Detector temperature control system for ultraviolet spectrometer

doi: 10.37188/CO.2023-0133
Funds:  Supported by the National Natural Science Foundation of China (No. 62005268)
More Information
  • Corresponding author: jiangxue470@163.com
  • Received Date: 07 Aug 2023
  • Rev Recd Date: 24 Aug 2023
  • Accepted Date: 12 Sep 2023
  • Available Online: 27 Oct 2023
  • A temperature control system that employs an incremental PID algorithm based on FPGA technology has been developed to decrease detector noise and dark current while ensure the CMOS detector of the spectrometer obtain more accurate spectrum curve. Considering the current temperature and the control parameters, the appropriate control quantity is calculated to ensure the detector realize the target temperature. Controlling the temperature change rate of the detector is realized through front stage control, effectively solving the problem of overshooting. By adding the anti-integral saturation algorithm and the transition link of the target value, the function of the temperature change rate of the detector is controllable, and the problem of overshoot is solved. Multiple environmental tests conducted on the entire machine indicate that the system can control the temperature of the detector to reach any desired temperature within a specified temperature difference range of 40 °C under the ambient temperature condition in orbit. The sensor temperature has a margin of error of ±0.1 °C. Compared to the conventional analog PID control method, the proposed method offers significant advantages of high sensitivity and strong stability. At a temperature of −10 °C, the noise of the detector is substantially reduced.

     

  • loading
  • [1]
    薛庆生. 星载多谱段双视场紫外大气探测仪[J]. 光学 精密工程,2016,24(9):2101-2108. doi: 10.3788/OPE.20162409.2101

    XUE Q SH. Spaceborne multiband UV atmospheric sounder with two fields[J]. Optics and Precision Engineering, 2016, 24(9): 2101-2108. (in Chinese). doi: 10.3788/OPE.20162409.2101
    [2]
    崔程光, 王淑荣, 黄煜, 等. 多模式星载被动大气探测仪在轨天底/临边探测匹配方法研究[J]. 光学学报,2015,35(6):0601001. doi: 10.3788/AOS201535.0601001

    CUI CH G, WANG SH R, HUANG Y, et al. Study on the method of passive multi-mode space-based atmospheric sounding spectrometers nadir and limb matching in-flight[J]. Acta Optica Sinica, 2015, 35(6): 0601001. (in Chinese). doi: 10.3788/AOS201535.0601001
    [3]
    杨小虎, 王淑荣, 黄煜. 地球临边紫外环形成像仪几何定标技术研究[J]. 中国激光,2014,41(9):0913004. doi: 10.3788/CJL201441.0913004

    YANG X H, WANG SH R, HUANG Y. Research of geometric calibration of the earth annular ultraviolet limb imager[J]. Chinese Journal of Lasers, 2014, 41(9): 0913004. (in Chinese). doi: 10.3788/CJL201441.0913004
    [4]
    朱均超, 豆梓文, 李嘉强, 等. 高精度大范围的光学晶体温度控制系统[J]. 光学 精密工程,2018,26(7):1604-1611. doi: 10.3788/OPE.20182607.1604

    ZHU J CH, DOU Z W, LI J Q, et al. High-precision and wide-range optical crystal temperature control system[J]. Optics and Precision Engineering, 2018, 26(7): 1604-1611. (in Chinese). doi: 10.3788/OPE.20182607.1604
    [5]
    王建刚, 杨洪涛, 于晓周, 等. 大型气候环境试验舱冷热端温度动态模糊PID协调控制[J]. 光学 精密工程,2022,30(24):3159-3167. doi: 10.37188/OPE.20223024.3159

    WANG J G, YANG H T, YU X ZH, et al. Dynamic fuzzy-PID coordinated control of the cool-hot end temperature of large climate environmental test chambers[J]. Optics and Precision Engineering, 2022, 30(24): 3159-3167. (in Chinese). doi: 10.37188/OPE.20223024.3159
    [6]
    王青, 姚泽坤, 张寅, 等. 基于ADN8834的高精度DBR激光器温度自动控制系统[J]. 液晶与显示,2023,38(5):609-616. doi: 10.37188/CJLCD.2023-0068

    WANG Q, YAO Z K, ZHANG Y, et al. High accuracy temperature control system of DBR laser based on ADN8834[J]. Chinese Journal of Liquid Crystals and Displays, 2023, 38(5): 609-616. (in Chinese). doi: 10.37188/CJLCD.2023-0068
    [7]
    穆叶, 胡天立, 陈晨, 等. 采用模拟PID控制的DFB激光器温度控制系统研制[J]. 红外与激光工程,2019,48(4):0405001. doi: 10.3788/IRLA201948.0405001

    MU Y, HU T L, CHEN CH, et al. Development of temperature control system of DFB laser using analog PID control[J]. Infrared and Laser Engineering, 2019, 48(4): 0405001. (in Chinese). doi: 10.3788/IRLA201948.0405001
    [8]
    张佩杰, 宋克非. 极光成像仪滤光片高精度温度控制系统设计[J]. 红外与激光工程,2014,43(S1):177-182.

    ZHANG P J, SONG K F. Design of high accuracy temperature control system of auroral imager light filter system[J]. Infrared and Laser Engineering, 2014, 43(S1): 177-182. (in Chinese).
    [9]
    姜炎坤, 朴亨, 王鹏, 等. 采用线性自抗扰技术的高精度温度控制系统研制[J]. 红外与激光工程,2023,52(2):20210813. doi: 10.3788/IRLA20210813

    JIANG Y K, PIAO H, WANG P, et al. Research on high precision temperature control system using linear auto disturbance rejection technique[J]. Infrared and Laser Engineering, 2023, 52(2): 20210813. (in Chinese). doi: 10.3788/IRLA20210813
    [10]
    李禹希, 张刘, 陈思桐, 等. 基于自抗扰算法的光电跟踪伺服控制方法研究[J]. 中国光学,2022,15(3):562-567. doi: 10.37188/CO.2022-0090

    LI Y X, ZHANG L, CHEN S T, et al. Photoelectric tracking servo control method based on active disturbance rejection algorithm[J]. Chinese Optics, 2022, 15(3): 562-567. doi: 10.37188/CO.2022-0090
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article views(140) PDF downloads(118) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return