Volume 17 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
WANG Xiao-kun, LI Zhou, LIANG Guo-long. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125
Citation: WANG Xiao-kun, LI Zhou, LIANG Guo-long. Tunable narrow-band perfect absorber based on metal-dielectric-metal[J]. Chinese Optics, 2024, 17(2): 263-270. doi: 10.37188/CO.2023-0125

Tunable narrow-band perfect absorber based on metal-dielectric-metal

doi: 10.37188/CO.2023-0125
Funds:  Supported by National Natural Science Foundation of China (No. 62105330)
More Information
  • Corresponding author: 15500027661@163.com
  • Received Date: 28 Jul 2023
  • Rev Recd Date: 08 Sep 2023
  • Available Online: 05 Dec 2023
  • To achieve perfect narrowband absorber, we proposed a simple three-layer thin film (MDM) structure and developed a theoretical model. A comprehensive investigation was conducted on this structure through a combination of simulations and theoretical calculations. First, we executed theoretical calculations on the structure using both finite-difference time-domain algorithm (FDTD) and transfer matrix algorithm. The effects of several structural parameters on the absorption spectrum were analyzed in this study. We analyzed and discussed the physical mechanism of narrow band perfect absorber structure caused by the structure. Finally, we successfully used magnetron sputtering as a fabrication method to produce three-layer samples. The experimental results were consistent with the theoretical simulation. Our proposed structure for a narrowband perfect absorber can achieve a maximum narrow bandwidth of approximately 21 nm and a maximum absorption of 99.51%. We establish a strong basis for related applications by achieving perfect narrowband absorption.

     

  • loading
  • [1]
    WATTS C M, LIU X L, PADILLA W J. Metamaterial electromagnetic wave absorbers[J]. Advanced Materials, 2012, 24(23): OP98-OP120.
    [2]
    YONG ZH D, ZHANG S L, GONG CH SH, et al. Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications[J]. Scientific Reports, 2016, 6: 24063. doi: 10.1038/srep24063
    [3]
    TYSON J J, SCHEUL T E, RAHMAN T, et al. Characterising the broadband, wide–angle reflectance properties of black silicon surfaces for photovoltaic applications[J]. Optics Express, 2023, 31(17): 28295-28307. doi: 10.1364/OE.496448
    [4]
    AZAD A K, KORT-KAMP W J M, SÝKORA M, et al. Metasurface broadband solar absorber[J]. Scientific Reports, 2016, 6: 20347. doi: 10.1038/srep20347
    [5]
    NAGARAJAN A, VIVEK K, SHAH M, et al. A broadband plasmonic metasurface superabsorber at optical frequencies: analytical design framework and demonstration[J]. Advanced Optical Materials, 2018, 6(16): 1800253. doi: 10.1002/adom.201800253
    [6]
    LI W, VALENTINE J. Metamaterial perfect absorber based hot electron photodetection[J]. Nano Letters, 2014, 14(6): 3510-3514. doi: 10.1021/nl501090w
    [7]
    DING H, WU SH L, ZHANG CH, et al. Tunable infrared hot-electron photodetection by exciting gap-mode plasmons with wafer-scale gold nanohole arrays[J]. Optics Express, 2020, 28(5): 6511-6520. doi: 10.1364/OE.387339
    [8]
    DANA B D, JI B Y, LIN J Q, et al. Hybrid plasmonic modes for enhanced refractive index sensing[J]. Advanced Sensor Research, 2023.
    [9]
    BALLEW C, ROBERTS G, FARAON A. Multi-dimensional wavefront sensing using volumetric meta-optics[J]. Optics Express, 2023, 31(18): 28658-28669. doi: 10.1364/OE.492440
    [10]
    PARK B, YUN S H, CHO C Y, et al. Surface plasmon excitation in semitransparent inverted polymer photovoltaic devices and their applications as label-free optical sensors[J]. Light:Science & Applications, 2014, 3(12): e222.
    [11]
    LU X Y, ZHANG T Y, WAN R G, et al. Numerical investigation of narrowband infrared absorber and sensor based on dielectric-metal metasurface[J]. Optics Express, 2018, 26(8): 10179-10187. doi: 10.1364/OE.26.010179
    [12]
    ZHANG L J, LU W K, ZHU L P, et al. Dual-band complementary metamaterial perfect absorber for multispectral molecular sensing[J]. Optics Express, 2023, 31(19): 31024-31038. doi: 10.1364/OE.498114
    [13]
    张志东, 张慧男, 梁洁, 等. 基于Au纳米平行双棒超表面阵列的双Fano共振和折射率传感器特性研究[J]. 中国光学(中英文),2023,16(4):961-971. doi: 10.37188/CO.EN-2023-0008

    ZHANG ZH D, ZHANG H N, LIANG J, et al. Double Fano resonance and refractive index sensors based on parallel-arranged Au nanorod dimer metasurface arrays[J]. Chinese Optics, 2023, 16(4): 961-971. (in Chinese). doi: 10.37188/CO.EN-2023-0008
    [14]
    刘强, 赵锦, 孙宇丹, 等. 基于表面等离子体共振的光子准晶体光纤甲烷氢气传感器[J]. 中国光学(中英文),2023,16(1):174-183. doi: 10.37188/CO.EN.2022-0006

    LIU Q, ZHAO J, SUN Y D, et al. A novel methane and hydrogen sensor with surface plasmon resonance-based photonic quasi-crystal fiber[J]. Chinese Optics, 2023, 16(1): 174-183. (in Chinese). doi: 10.37188/CO.EN.2022-0006
    [15]
    李爱武, 单天奇, 国旗, 等. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文),2022,15(4):609-624. doi: 10.37188/CO.2021-0219

    LI A W, SHAN T Q, GUO Q, et al. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. (in Chinese). doi: 10.37188/CO.2021-0219
    [16]
    COSTANTINI D, LEFEBVRE A, COUTROT A L, et al. Plasmonic metasurface for directional and frequency-selective thermal emission[J]. Physical Review Applied, 2015, 4(1): 014023. doi: 10.1103/PhysRevApplied.4.014023
    [17]
    LIU X L, TYLER T, STARR T, et al. Taming the blackbody with infrared metamaterials as selective thermal emitters[J]. Physical Review Letters, 2011, 107(4): 045901. doi: 10.1103/PhysRevLett.107.045901
    [18]
    AMELING R, DREGELY D, GIESSEN H. Strong coupling of localized and surface plasmons to microcavity modes[J]. Optics Letters, 2011, 36(12): 2218-2220. doi: 10.1364/OL.36.002218
    [19]
    YU L, LIANG Y ZH, GAO H X, et al. Multi-resonant absorptions in asymmetric step-shaped plasmonic metamaterials for versatile sensing application scenarios[J]. Optics Express, 2022, 30(2): 2006-2017. doi: 10.1364/OE.446195
    [20]
    QIN ZH, SHI X Y, YANG F M, et al. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring[J]. Optics Express, 2022, 30(1): 473-483. doi: 10.1364/OE.446655
    [21]
    HU X L, SUN L B, ZENG B B, et al. Polarization-independent plasmonic subtractive color filtering in ultrathin Ag nanodisks with high transmission[J]. Applied Optics, 2016, 55(1): 148-152. doi: 10.1364/AO.55.000148
    [22]
    RAKHSHANI M R, RASHKI M. Metamaterial perfect absorber using elliptical nanoparticles in a multilayer metasurface structure with polarization independence[J]. Optics Express, 2022, 30(7): 10387-10399. doi: 10.1364/OE.454298
    [23]
    DING T, SIGLE D, ZHANG L W, et al. Controllable tuning plasmonic coupling with nanoscale oxidation[J]. ACS Nano, 2015, 9(6): 6110-6118. doi: 10.1021/acsnano.5b01283
    [24]
    KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 2013, 12(1): 20-24. doi: 10.1038/nmat3443
    [25]
    PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1998.
    [26]
    HAO J M, ZHOU L, QIU M. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16): 165107. doi: 10.1103/PhysRevB.83.165107
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article views(248) PDF downloads(109) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return