Volume 17 Issue 2
Mar.  2024
Turn off MathJax
Article Contents
DU Chao, ZHAO Shuang, SONG Hua-ke, WANG Qiu-yu, JIA Bin, ZHANG Li, CUI Li-qin, ZHAO Qiang, DENG Xiao. A seawater salinity sensor based on dual peaks resonance long period fiber grating[J]. Chinese Optics, 2024, 17(2): 291-299. doi: 10.37188/CO.2023-0101
Citation: DU Chao, ZHAO Shuang, SONG Hua-ke, WANG Qiu-yu, JIA Bin, ZHANG Li, CUI Li-qin, ZHAO Qiang, DENG Xiao. A seawater salinity sensor based on dual peaks resonance long period fiber grating[J]. Chinese Optics, 2024, 17(2): 291-299. doi: 10.37188/CO.2023-0101

A seawater salinity sensor based on dual peaks resonance long period fiber grating

doi: 10.37188/CO.2023-0101
Funds:  Supported by National Natural Science Foundation of China (No. 62203320, No. 62375198, No. 52009088, No. 61933004); Project funded by China Postdoctoral Science Foundation (No. 2019M661063); Research Project Supported by Shanxi Scholarship Council of China (No. 2023-039); Science and Technology Innovation Project of Laoshan Laboratory (Qingdao) (No. LSKJ202204703)
More Information
  • Corresponding author: dengxiao@tyut.edu.cn
  • Received Date: 12 Jun 2023
  • Rev Recd Date: 06 Jul 2023
  • Available Online: 06 Nov 2023
  • To develop a highly sensitive seawater salinity sensor, a long period fiber grating (LPFG) was successfully fabricated using CO2 laser technology to function in close proximity to the dispersion turning point (DTP). An LPFG operating near DTP was fabricated in an 80 μm single mode fiber using CO2 laser micromachining technology. This successful endeavor demonstrates the feasibility of developing LPFG with shorter grating period using CO2 laser micromaching technology. LPFGs with varying periods were fabricated by adjusting the preparation period of CO2 laser to ensure that the cladding mode LP1,9 was operating near DTP, resulting in higher refractive index sensitivity of LPFG. The average sensitivity of 0.279 nm/‰ can be achieved in the seawater with salinity ranging from 5.001‰ to 39.996‰, especially with the dual peaks resonance LPFG at a period of 115.4 μm, thanks to the dual peaks resonance effect. The dual peaks resonance LPFG seawater salinity sensor exhibits high sensitivity and a large attenuation loss, suggesting potential application in seawater salinity monitoring.

     

  • loading
  • [1]
    SOHAIL T, ZIKA J D, IRVING D B, et al. Observed poleward freshwater transport since 1970[J]. Nature, 2022, 602(7898): 617-622. doi: 10.1038/s41586-021-04370-w
    [2]
    KATSUMATA K, PURKEY S G, COWLEY R, et al. GO-SHIP easy ocean: gridded ship-based hydrographic section of temperature, salinity, and dissolved oxygen[J]. Scientific Data, 2022, 9(1): 103. doi: 10.1038/s41597-022-01212-w
    [3]
    LI Y, WU G F, SONG G, et al. Soft, pressure-tolerant, flexible electronic sensors for sensing under harsh environments[J]. ACS Sensors, 2022, 7(8): 2400-2409. doi: 10.1021/acssensors.2c01059
    [4]
    DINNAT E P, LE VINE D M, BOUTIN J, et al. Remote sensing of sea surface salinity: comparison of satellite and in situ observations and impact of retrieval parameters[J]. Remote Sensing, 2019, 11(7): 750. doi: 10.3390/rs11070750
    [5]
    DEMIR O, JOHNSON J T, JEZEK K C, et al. Studies of sea-ice thickness and salinity retrieval using 0.5-2 GHz microwave radiometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4304412.
    [6]
    QIAN Y, ZHAO Y, WU Q L, et al. Review of salinity measurement technology based on optical fiber sensor[J]. Sensors and Actuators B:Chemical, 2018, 260: 86-105. doi: 10.1016/j.snb.2017.12.077
    [7]
    QUAN X H, FRY E S. Empirical equation for the index of refraction of seawater[J]. Applied Optics, 1995, 34(18): 3477-3480. doi: 10.1364/AO.34.003477
    [8]
    ZHENG H K, ZHAO Y, LV R Q, et al. Study on the temperature and salinity sensing characteristics of multifunctional reflective optical fiber probe[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 9514308.
    [9]
    ZHAO Y, ZHAO J, WANG X X, et al. Femtosecond laser-inscribed fiber-optic sensor for seawater salinity and temperature measurements[J]. Sensors and Actuators B:Chemical, 2022, 353: 131134. doi: 10.1016/j.snb.2021.131134
    [10]
    ZHANG S Q, PENG Y, WEI X, et al. High-sensitivity biconical optical fiber SPR salinity sensor with a compact size by fiber grinding technique[J]. Measurement, 2022, 204: 112156. doi: 10.1016/j.measurement.2022.112156
    [11]
    WANG Y, TONG R J, ZHAO K J, et al. Optical fiber sensor based on SPR and MZI for seawater salinity and temperature measurement[J]. Optics & Laser Technology, 2023, 162: 109315.
    [12]
    SUN M Y, JIANG H T, SHI B, et al. Development of FBG salinity sensor coated with lamellar polyimide and experimental study on salinity measurement of gravel aquifer[J]. Measurement, 2019, 140: 526-537. doi: 10.1016/j.measurement.2019.03.020
    [13]
    AN G W, LIU L, HU P, et al. Probe type TFBG-excited SPR fiber sensor for simultaneous measurement of multiple ocean parameters assisted by CFBG[J]. Optics Express, 2023, 31(3): 4229-4237. doi: 10.1364/OE.481948
    [14]
    YANG F, HLUSHKO R, WU D, et al. Ocean salinity sensing using long-period fiber gratings functionalized with layer-by-layer hydrogels[J]. ACS Omega, 2019, 4(1): 2134-2141. doi: 10.1021/acsomega.8b02823
    [15]
    ZHAO SH, DU CH, WANG Q Y, et al. A long period fiber grating seawater salinity sensor based on bend insensitive single mode fiber[J]. Optical Fiber Technology, 2023, 77: 103269. doi: 10.1016/j.yofte.2023.103269
    [16]
    LI Q SH, YANG Y, DU Y D, et al. Highly sensitive detection of low-concentration sodium chloride solutions based on polymeric nanofilms coated long period fiber grating[J]. Talanta, 2023, 254: 124126. doi: 10.1016/j.talanta.2022.124126
    [17]
    DEL VILLAR I. Ultrahigh-sensitivity sensors based on thin-film coated long period gratings with reduced diameter, in transition mode and near the dispersion turning point[J]. Optics Express, 2015, 23(7): 8389-8398. doi: 10.1364/OE.23.008389
    [18]
    CHEN J Y, BAI ZH Y, ZHU G X, et al. Femtosecond laser inscribed helical long period fiber grating for exciting orbital angular momentum[J]. Optics Express, 2022, 30(3): 4402-4411. doi: 10.1364/OE.449619
    [19]
    张亚妮, 刘思聪, 赵亚, 等. 800 nm高能量飞秒激光脉冲刻写长周期光纤光栅机理[J]. 光子学报,2018,47(1):0106003. doi: 10.3788/gzxb20184701.0106003

    ZHANG Y N, LIU S C, ZHAO Y, et al. Fabrication mechanism of long-period fiber grating based on 800 nm high intensity femto-second laser pulses[J]. Acta Photonica Sinica, 2018, 47(1): 0106003. (in Chinese). doi: 10.3788/gzxb20184701.0106003
    [20]
    张亚妮, 郗亚茹, 江鹏, 等. 飞秒激光直写长周期光纤光栅及其光谱特性[J]. 光子学报,2018,47(11):1106001. doi: 10.3788/gzxb20184711.1106001

    ZHANG Y N, XI Y R, JIANG P, et al. Fabrication of long period fibre gratings by femtosecond laser writing directly and its spectral characteristics[J]. Acta Photonica Sinica, 2018, 47(11): 1106001. (in Chinese). doi: 10.3788/gzxb20184711.1106001
    [21]
    ZHANG Y N, JIANG P, QIAO D, et al. Sensing characteristics of long period grating by writing directly in SMF-28 based on 800 nm femtosecond laser pulses[J]. Optics & Laser Technology, 2020, 121: 105839.
    [22]
    ŚMIETANA M, DOMINIK M, MIKULIC P, et al. Temperature and refractive index sensing with Al2O3-nanocoated long-period gratings working at dispersion turning point[J]. Optics & Laser Technology, 2018, 107: 268-273.
    [23]
    DU CH, WANG Q, ZHAO Y, et al. Ultrasensitive long-period gratings sensor works near dispersion turning point and mode transition region by optimally designing a photonic crystal fiber[J]. Optics & Laser Technology, 2019, 112: 261-268.
    [24]
    朱雨雨, 郗亚茹, 张亚妮, 等. 长周期光纤光栅光谱特性仿真研究[J]. 中国光学,2020,13(3):451-458.

    ZHU Y Y, XI Y R, ZHANG Y N, et al. Numerical simulation of transmission spectra characterization of long-period fiber grating[J]. Chinese Optics, 2020, 13(3): 451-458. (in Chinese).
    [25]
    ZHONG X Y, WANG Y P, LIAO CH R, et al. Long period fiber gratings inscribed with an improved two-dimensional scanning technique[J]. IEEE Photonics Journal, 2014, 6(4): 2201508.
    [26]
    DEL VILLAR I, FUENTES O, CHIAVAIOLI F, et al. Optimized strain long-period fiber grating (LPFG) sensors operating at the dispersion turning point[J]. Journal of Lightwave Technology, 2018, 36(11): 2240-2247. doi: 10.1109/JLT.2018.2790434
    [27]
    PEREIRA D A, FRAZAO O, SANTOS J L. Fiber Bragg grating sensing system for simultaneous measurement of salinity and temperature[J]. Optical Engineering, 2004, 43(2): 299-304. doi: 10.1117/1.1637903
    [28]
    DEL VILLAR I, CRUZ J L, SOCORRO A B, et al. Sensitivity optimization with cladding-etched long period fiber gratings at the dispersion turning point[J]. Optics Express, 2016, 24(16): 17680-17685. doi: 10.1364/OE.24.017680
    [29]
    VIVEIROS D, DE ALMEIDA J M M M, COELHO L, et al. Turn around point long period fiber gratings with coupling to asymmetric cladding modes fabricated by a femtosecond laser and coated with titanium dioxide[J]. Journal of Lightwave Technology, 2021, 39(14): 4784-4793. doi: 10.1109/JLT.2021.3078257
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(1)

    Article views(248) PDF downloads(116) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return