Volume 16 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
SUN Jing-xu, XIE Hong-bo, LI Shu-xian, XIE Xin-wang, WANG Shuo, ZHOU Feng. All-aluminum high-resolution camera with lightweight and compact size[J]. Chinese Optics, 2023, 16(6): 1450-1462. doi: 10.37188/CO.2023-0062
Citation: SUN Jing-xu, XIE Hong-bo, LI Shu-xian, XIE Xin-wang, WANG Shuo, ZHOU Feng. All-aluminum high-resolution camera with lightweight and compact size[J]. Chinese Optics, 2023, 16(6): 1450-1462. doi: 10.37188/CO.2023-0062

All-aluminum high-resolution camera with lightweight and compact size

doi: 10.37188/CO.2023-0062
Funds:  Supported by Projects funded by the R & D plan in key areas of Guangdong Province (No. 2018B030328001)
More Information
  • Corresponding author: sunjingxu2004@163.com
  • Received Date: 12 Apr 2023
  • Rev Recd Date: 06 May 2023
  • Available Online: 14 Sep 2023
  • In order to meet the urgent need of developing lightweight and compact space cameras quickly, effectively, and rapidly, a detailed comparative analysis is conducted, including optical system forms and imaging systems. The optical system form of RC+ compensation group is determined, and the imaging system of small F#+micropixel is adopted. Compared with the detailed parameters of the DOVE camera, a lightweight all-aluminum high-resolution camera with a resolution of 3.48 m at an orbital altitude of 500 km is designed. The overall design results of the camera, its optical and optomechanical structures, imaging electronics, and thermal control are described in detail. The optical design results of the RC+ compensation group of F5.6 are obtained. Using RSA-6061 microcrystalline aluminum alloy as the structural material of the mirror, coupled with an integrated high-rigidity hard aluminum alloy structure, the static (gravity and temperature deformation) simulation analysis results meet the optical design tolerance requirements. The dynamic simulation analysis results show that the first order mode is 302.92 Hz, which has a sufficiently high dynamic stiffness and safety redundancy. The imaging electronics using a 3.2 μm large area array 9 K×7 K detector is designed for low noise miniaturization. Thermal control is provided by the satellite platform at a temperature level of 20 °C± 4 °C for the camera. Integration test results show that: (1) The RMS wave aberration of the central field of view is λ/15.6, and the wavefront aberration of the five fields of view is better than λ/12.3, which ensure high-quality imaging near the diffraction limit of the camera. The measured optical transfer function at Nyquist frequency is 0.217; (2) The maximum sinusoidal vibration of the camera in three directions is amplified 1.17 times, and the first-order mode of the camera is 295 Hz, with a deviation of 2.61% from the simulation result. The structural stiffness is high and the mechanical stability is good. Under vacuum environment of 10−4 Pa and three different temperatures of 16 °C, 20 °C and 24 °C, the image is clear and can distinguish the corresponding resolution plate image at Nyquist frequency; (3) The image of 2 km outfield target is good, as well as clear and distinct grayscale image with sharp shadow boundaries. The all-aluminum high-resolution camera is achieved 3.48 m resolution at a track height of 500 km,width of 15 km×15 km and a total weight of 2 kg. The structural rigidity and strength test results meet the requirements of space launch scenarios, and these can provide theoretical guidance and engineering reference for the design of lightweight and higher-resolution space cameras.

     

  • loading
  • [1]
    王丰璞, 李新南, 徐晨, 等. 大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计[J]. 中国光学(中英文),2021,14(5):1184-1193. doi: 10.37188/CO.2020-0218

    WANG F P, LI X N, XU CH, et al. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 2021, 14(5): 1184-1193. (in Chinese) doi: 10.37188/CO.2020-0218
    [2]
    赵宇, 苏成志, 赵贵军, 等. Φ500mm超轻量化SiC反射镜结构优化设计[J]. 中国光学(中英文),2020,13(6):1352-1361. doi: 10.37188/CO.2019-0201

    ZHAO Y, SU CH ZH, ZHAO G J, et al. Structural optimization for the design of an ultra-lightweight SiC mirror with a diameter of 500 mm[J]. Chinese Optics, 2020, 13(6): 1352-1361. (in Chinese) doi: 10.37188/CO.2019-0201
    [3]
    曹明辉, 辛宏伟, 陈长征, 等. 微小型空间相机碳纤维整体式主框架轻量化设计[J]. 仪器仪表学报,2022,43(2):54-61.

    CAO M H, XIN H W, CHEN CH ZH, et al. A lightweight design of carbon fiber integrated main frame for the micro space camera[J]. Chinese Journal of Scientific Instrument, 2022, 43(2): 54-61. (in Chinese)
    [4]
    刘永健, 张飞, 谢婷, 等. 基于伴随仿真的偏振复用超构透镜[J]. 中国光学(中英文),2021,14(4):754-763. doi: 10.37188/CO.2021-0035

    LIU Y J, ZHANG F, XIE T, et al. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. (in Chinese) doi: 10.37188/CO.2021-0035
    [5]
    孔德成, 刘伟, 颜昌翔, 等. 空间卫星相机安装固定基频性能优化设计[J]. 计算机仿真,2019,36(6):98-102.

    KONG D CH, LIU W, YAN CH X, et al. Optimization design of fundamental frequency on space satellite camera installation[J]. Computer Simulation, 2019, 36(6): 98-102. (in Chinese)
    [6]
    XIE Y J, MAO X L, LI J P, et al. Optical design and fabrication of an all-aluminum unobscured two-mirror freeform imaging telescope[J]. Applied Optics, 2020, 59(3): 833-840. doi: 10.1364/AO.379324
    [7]
    王上, 张星祥, 朱俊青. 空间相机全铝合金光机结构的设计与分析[J]. 红外技术,2022,44(4):364-370.

    WANG SH, ZHANG X X, ZHU J Q. Design and analysis of all aluminum alloy optical mechanical structure of space cameras[J]. Infrared Technology, 2022, 44(4): 364-370. (in Chinese)
    [8]
    RISSE S, GEBHARDT A, DAMM C, et al. Novel TMA telescope based on ultra precise metal mirrors[J]. Proceedings of SPIE, 2008, 7010: 701016. doi: 10.1117/12.789824
    [9]
    JUNAID M. The development of a hardware-in-the-loop platform for the attitude determination and control testing of a small satellite[J]. Byte Españ a, 2015, 1(4): 78-80.
    [10]
    HAND E. Startup liftoff[J]. Science, 2015, 348(6231): 172-177. doi: 10.1126/science.348.6231.172
    [11]
    龚燃, 姜代洋. 2022年国外民商用对地观测卫星发展综述[J]. 国际太空,2023(2):26-33.

    GONG R, JIANG D Y. Overview of the development of foreign civil and commercial earth observation satellites in 2022[J]. Space International, 2023(2): 26-33. (in Chinese)
    [12]
    伍雁雄, 王丽萍. 小型化宽谱段星敏感器光学系统设计[J]. 应用光学,2021,42(5):782-789. doi: 10.5768/JAO202142.0501004

    WU Y X, WANG L P. Optical system of star sensor with miniaturization and wide spectral band[J]. Journal of Applied Optics, 2021, 42(5): 782-789. (in Chinese) doi: 10.5768/JAO202142.0501004
    [13]
    金光, 张亮, 胡福生. 大 F数高分辨率空间望远镜光学系统[J]. 光学 精密工程,2007,15(2):155-159.

    JIN G, ZHANG L, HU F SH. Investigation on space optical system of high F number and high resolution[J]. Optics and Precision Engineering, 2007, 15(2): 155-159. (in Chinese)
    [14]
    张刘, 郑潇逸, 张帆, 等. 大容差多柔性透镜组结构优化设计[J]. 吉林大学学报(工学版),2021,51(2):478-485.

    ZHANG L, ZHENG X Y, ZHANG F, et al. Structural optimization design of large tolerance and multi-flexibility lens subassembly[J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(2): 478-485. (in Chinese)
    [15]
    周鹏骥, 王晓东, 董吉洪, 等. 天问一号高分相机成像噪声分析与抑制[J]. 光学 精密工程,2022,30(2):217-226. doi: 10.37188/OPE.20223002.0217

    ZHOU P J, WANG X D, DONG J H, et al. Imaging noise analyzing and suppressing for Tianwen-1 high-resolution camera[J]. Optics and Precision Engineering, 2022, 30(2): 217-226. (in Chinese) doi: 10.37188/OPE.20223002.0217
    [16]
    温中凯, 张庆君, 李爽, 等. 空间光电跟瞄系统多光轴平行性标校研究[J]. 中国光学(中英文),2021,14(3):625-633. doi: 10.37188/CO.2020-0133

    WEN ZH K, ZHANG Q J, LI SH, et al. Multi-optical axis parallelism calibration of space photoelectric tracking and aiming system[J]. Chinese Optics, 2021, 14(3): 625-633. (in Chinese) doi: 10.37188/CO.2020-0133
    [17]
    李寒霜, 李博, 李昊晨, 等. 基于一种透镜材料的宽谱段紫外成像仪光学设计[J]. 中国光学(中英文),2022,15(1):65-71. doi: 10.37188/CO.2021-0127

    LI H SH, LI B, LI H CH, et al. Optical design of a wide-spectrum ultraviolet imager based on a single material[J]. Chinese Optics, 2022, 15(1): 65-71. (in Chinese) doi: 10.37188/CO.2021-0127
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(16)  / Tables(7)

    Article views(182) PDF downloads(85) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return