Volume 16 Issue 6
Nov.  2023
Turn off MathJax
Article Contents
ZONG Si-guang, ZHANG Xin, YANG Shao-peng, DUAN Zi-ke, CHEN Bao. Laser backscattering characteristics of ship wake bubble target[J]. Chinese Optics, 2023, 16(6): 1333-1342. doi: 10.37188/CO.2023-0043
Citation: ZONG Si-guang, ZHANG Xin, YANG Shao-peng, DUAN Zi-ke, CHEN Bao. Laser backscattering characteristics of ship wake bubble target[J]. Chinese Optics, 2023, 16(6): 1333-1342. doi: 10.37188/CO.2023-0043

Laser backscattering characteristics of ship wake bubble target

doi: 10.37188/CO.2023-0043
Funds:  Supported by the National Defense Foundation of China(No. 2019-JCJQ-JJ-056)
  • Received Date: 13 Mar 2023
  • Rev Recd Date: 15 May 2023
  • Available Online: 13 Jul 2023
  • In order to improve the laser wake guidance distance and the detection signal-to-noise ratio, it is of great theoretical and practical value to study the backscattering characteristics of bubble targets with different distances, bubble sizes, bubble number densities, and bubble layer thicknesses. The laser backscattering characteristics of ship wake bubble targets with different distances, scales, numerical densities, and thicknesses are studied using Monte Carlo simulations and indoor experiments. When the bubble density is 102−108 m−3 and the thickness of the bubble layer is greater than 0.05 m, there is always an echo signal for both large- and small-scale bubbles. When the thickness of the bubble layer is less than 0.05 m, no echo signal is detected. At this situation, the thickness of the bubble layer is the greatest impact factor on the backward scattering of bubbles. When the bubble number density is 109 m−3 and the thickness of the bubble layer is below 0.05 m, the pulse width of the large-scale bubble echo signal widens. The number density and scale characteristics of the bubbles have the greatest impact on the backscattering of bubbles. A laser backscattering measurement system at the scale of typical underwater bubbles is built to verify the influence of different ship wake bubble characteristics on the laser backscattering detection system, which can provide support for the ship wake laser detection project.

     

  • loading
  • [1]
    郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性[J]. 物理学报,2022,71(1):014301. doi: 10.7498/aps.71.20211266

    ZHENG Y X, NA R M D L. Acoustic cavitation characteristics of bubble in compressible liquid[J]. Acta Physica Sinica, 2022, 71(1): 014301. (in Chinese) doi: 10.7498/aps.71.20211266
    [2]
    胡宁宁, 党卓然, 张牧昊, 等. 基于卷积神经网络的大尺寸气泡体积二维图像测定方法[J]. 核动力工程,2021,42(6):38-43. doi: 10.13832/j.jnpe.2021.06.0038

    HU N N, DANG ZH R, ZHANG M H, et al. Measurements of large bubble volume based on 2-D images processing applying convolutional neural network[J]. Nuclear Power Engineering, 2021, 42(6): 38-43. (in Chinese) doi: 10.13832/j.jnpe.2021.06.0038
    [3]
    刘文鹏. 典型水文条件对气泡运动的影响规律研究[J]. 海洋技术学报,2021,40(3):58-66.

    LIU W P. Study on the influence of typical hydrological conditions to bubble motion[J]. Journal of Ocean Technology, 2021, 40(3): 58-66. (in Chinese)
    [4]
    王明军, 王宇航, 陈丹, 等. 二维动态海面-气泡层中蓝绿激光的透射特性[J]. 光学学报,2022,42(2):0214001. doi: 10.3788/AOS202242.0214001

    WANG M J, WANG Y H, CHEN D, et al. Transmission characteristics of blue-green laser through two-dimensional dynamic sea surface-bubble layer[J]. Acta Optica Sinica, 2022, 42(2): 0214001. (in Chinese) doi: 10.3788/AOS202242.0214001
    [5]
    梁秀满, 刘文涛, 牛福生, 等. 基于机器视觉的浮选气泡体积和表面积测量研究[J]. 光学学报,2018,38(12):1215009. doi: 10.3788/AOS201838.1215009

    LIANG X M, LIU W T, NIU F SH, et al. Research on measurement of volume and surface area of flotation bubbles based on machine vision[J]. Acta Optica Sinica, 2018, 38(12): 1215009. (in Chinese) doi: 10.3788/AOS201838.1215009
    [6]
    胡瑞, 唐继国, 李晓, 等. 生长和浮升过程中气泡形状振荡特性研究[J]. 原子能科学技术,2022,56(3):450-456.

    HU R, TANG J G, LI X, et al. Bubble shape oscillation characteristic during its growth and rising process[J]. Atomic Energy Science and Technology, 2022, 56(3): 450-456. (in Chinese)
    [7]
    LI SH M, ZHANG A M, LIU N N. Effect of a rigid structure on the dynamics of a bubble beneath the free surface[J]. Theoretical and Applied Mechanics Letters, 2021, 11(6): 100311. doi: 10.1016/j.taml.2021.100311
    [8]
    张丽娟, 张传超, 陈静, 等. 激光诱导熔石英表面损伤修复中的气泡形成和控制研究[J]. 物理学报,2018,67(1):016103. doi: 10.7498/aps.67.20171839

    ZHANG L J, ZHANG CH CH, CHEN J, et al. Formation and control of bubbles during the mitigation of laser-induced damage on fused silica surface[J]. Acta Physica Sinica, 2018, 67(1): 016103. (in Chinese) doi: 10.7498/aps.67.20171839
    [9]
    HU Q L, HUO J T, MIAO X K, et al. Simulation of false-alarm area of laser guidance based on Mie scattering model[J]. Optoelectronics Letters, 2021, 17(4): 236-240. doi: 10.1007/s11801-021-0041-6
    [10]
    叶得前. 航迹尾流的散射光偏振探测及特性研究[D]. 长春: 长春理工大学, 2020.

    YE D Q. Polarization detection and characteristics of scattered light in track wake[D]. Changchun: Changchun University of Science and Technology, 2020. (in Chinese)
    [11]
    WANG Y Q, ZHANG J H, ZHENG Y CH, et al. Brillouin scattering spectrum for liquid detection and applications in oceanography[J]. Opto-Electronic Advances, 2023, 6(1): 220016. doi: 10.29026/oea.2023.220016
    [12]
    吕金光, 梁静秋, 王维彪, 等. 快照傅里叶变换成像光谱仪阵列非均匀特性的Monte Carlo分析[J]. 光学学报,2021,41(24):2430001.

    LV J G, LIANG J Q, WANG W B, et al. Monte Carlo analysis of array non-uniformity in snapshot fourier transform imaging spectrometer[J]. Acta Optica Sinica, 2021, 41(24): 2430001. (in Chinese)
    [13]
    郭旭, 胡春晖, 颜昌翔, 等. 基于蒙特卡罗法的星载太阳辐照度光谱仪对日指向误差分析[J]. 光学 精密工程,2021,29(3):474-483. doi: 10.37188/OPE.20212903.0474

    GUO X, HU CH H, YAN CH X, et al. Analysis of sun pointing error of spaceborne solar spectroradiometer based on Monte Carlo method[J]. Optical and Precision Engineering, 2021, 29(3): 474-483. (in Chinese) doi: 10.37188/OPE.20212903.0474
    [14]
    LIN W H, WANG B B, WANG L, et al. A detail preserving neural network model for Monte Carlo denoising[J]. Computational Visual Media, 2020, 6(2): 157-168. doi: 10.1007/s41095-020-0167-7
    [15]
    孔晓娟, 刘秉义, 杨倩, 等. 船载激光雷达测量水体光学参数的仿真模拟研究[J]. 红外与激光工程,2020,49(2):0205010. doi: 10.3788/IRLA202049.0205010

    KONG X J, LIU B Y, YANG Q, et al. Simulation of water optical property measurement with shipborne lidar[J]. Infrared and Laser Engineering, 2020, 49(2): 0205010. (in Chinese) doi: 10.3788/IRLA202049.0205010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)

    Article views(256) PDF downloads(132) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return