Volume 16 Issue 3
May  2023
Turn off MathJax
Article Contents
CAO Zong-xin, CAO Nan, YANG Yan-yan, DING Zhi-ya, MAO Hong-min, PENG Jian-tao, FAN Li-na, LU Huan-jun, SUN Hui-juan, HU Li-fa, CAO Zhao-liang. Effect of atmospheric turbulence on the tracking accuracy of high-resolution remote sensing satellites[J]. Chinese Optics, 2023, 16(3): 550-558. doi: 10.37188/CO.2022-0196
Citation: CAO Zong-xin, CAO Nan, YANG Yan-yan, DING Zhi-ya, MAO Hong-min, PENG Jian-tao, FAN Li-na, LU Huan-jun, SUN Hui-juan, HU Li-fa, CAO Zhao-liang. Effect of atmospheric turbulence on the tracking accuracy of high-resolution remote sensing satellites[J]. Chinese Optics, 2023, 16(3): 550-558. doi: 10.37188/CO.2022-0196

Effect of atmospheric turbulence on the tracking accuracy of high-resolution remote sensing satellites

doi: 10.37188/CO.2022-0196
Funds:  Supported by Jiangsu Key Disciplines of the Fourteenth Five-Year Plan (No. 2021135); Industry-University-Institute Cooperation Foundation of the Eighth Research Institute of China Aerospace Science and Technology Corporation (No. SAST2020-025); the Academic Research Projects of Beijing Union University (No. ZK70202007); the Natural Science Foundation of Jiangsu Province (No. BK20220640); the Natural Science Foundation of Jiangsu Higher Education Institutions of China (No. 22KJB150011)
More Information
  • Corresponding author: caozl@usts.edu.cn
  • Received Date: 22 Sep 2022
  • Rev Recd Date: 30 Sep 2022
  • Accepted Date: 09 Dec 2022
  • Available Online: 09 Dec 2022
  • We focuse on the effects of camera aperture, atmospheric turbulence intensity and satellite orbit height on the tracking and positioning accuracy of high-resolution remote sensing satellites. Firstly, we establish a turbulence model and turbulence simulation method based on Kolmogorov turbulence theory for observation of the Earth. Then, the influence of camera aperture, satellite orbit height and atmospheric coherence length on the positioning accuracy of the satellite is simulated and analyzed, and then a universal formula is deduced to calculate the tilt aberration of turbulence wavefront. Finally, based on this universal formula, a theoretical formula for calculating jitter is derived for Earth observation. This work can provide a theoretical basis of the influence of atmospheric turbulence for the design, analysis and evaluation of high-resolution remote sensing satellites.

     

  • loading
  • [1]
    高世杰, 吴佳彬, 刘永凯, 等. 微小卫星激光通信系统发展现状与趋势[J]. 中国光学,2020,13(6):1171-1181. doi: 10.37188/CO.2020-0033

    GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese) doi: 10.37188/CO.2020-0033
    [2]
    SONG J K, LI Y Y, CHE D B, et al. Influence of turbulent atmosphere on the effect of coherent beam combining[J]. Chinese Optics, 2020, 13(4): 884-898. doi: 10.37188/CO.2019-0197
    [3]
    张景旭. 国外地基光电系统空间目标探测的进展[J]. 中国光学与应用光学,2009,2(1):10-16.

    ZHANG J X. Progress in foreign ground-based optoelectronic detecting system for space target detection[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(1): 10-16. (in Chinese)
    [4]
    周仁忠, 阎吉祥. 自适应光学理论[M]. 北京: 北京理工大学出版社, 1996.

    ZHOU R ZH, YAN J X. Theory of Adaptive Optics[M]. Beijing: Beijing Institute of Technology Press, 1996. (in Chinese)
    [5]
    RODDIER F. Adaptive Optics in Astronomy[M]. Cambridge: Cambridge University Press, 1999.
    [6]
    王克, 钱桂山. 美国成像侦察卫星技术研究和体系分析[C]. 卫星通信技术研讨会论文集. 中国通信学会, 2004: 51-56

    WANG K, QIAN G SH. Technology research and system analysis of US imaging reconnaissance satellite[C]. Satellite Communication Technology Seminar, China Communication Society, 2004: 51-56. (in Chinese)
    [7]
    喻际. 基于变形镜本征模式的无波前传感器自适应光学校正方法研究[D]. 北京: 北京理工大学, 2015.

    YU J. Wavefront sensorless adaptive optics correction method based on deformable mirror eigenmodes[D]. Beijing: Beijing Institute of Technology, 2015. (in Chinese)
    [8]
    李俊. 传输型详查相机微小自适应光学系统研究[D]. 武汉: 华中科技大学, 2006.

    LI J. Study of the adaptive optic system in transmission type, high-resolution reconnaissance camera[D]. Wuhan: Huazhong University of Science and Technology, 2006. (in Chinese)
    [9]
    张志伟, 马骏, 俞信. 微小型自适应光学系统及其在星载光学遥感器上的应用[J]. 红外与激光工程,2000,29(1):49-52. doi: 10.3969/j.issn.1007-2276.2000.01.013

    ZHANG ZH W, MA J, YU X. Micro adaptive optics and its application in air-borne optical remote sensor[J]. Infrared and Laser Engineering, 2000, 29(1): 49-52. (in Chinese) doi: 10.3969/j.issn.1007-2276.2000.01.013
    [10]
    邹皓, 李清瑶, 赵群, 等. 大气湍流参数对图像退化效果影响的研究[J]. 长春理工大学学报(自然科学版),2018,41(4):95-99.

    ZOU H, LI Q Y, ZHAO Q, et al. Research on influence of atmospheric turbulence parameters on image degradation[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41(4): 95-99. (in Chinese)
    [11]
    管保柱, 陈海清, 叶嘉雄, 等. 星载自适应光学系统的双导星信标理论研究[J]. 激光技术,2004,28(6):613-615,624. doi: 10.3969/j.issn.1001-3806.2004.06.030

    GUAN B ZH, CHEN H Q, YE J X, et al. Model of beacon used in the air-borne adaptive optical system[J]. Laser Technology, 2004, 28(6): 613-615,624. (in Chinese) doi: 10.3969/j.issn.1001-3806.2004.06.030
    [12]
    李波, 王挺峰, 王弟男, 等. 激光大气传输湍流扰动仿真技术[J]. 中国光学,2012,5(3):289-295.

    LI B, WANG T F, WANG D N, et al. Simulation of laser beam propagation through turbulence[J]. Chinese Optics, 2012, 5(3): 289-295. (in Chinese)
    [13]
    阎吉祥, 俞信. 大气湍流对遥感系统分辨力的影响[J]. 光学技术,2004,30(1):68-69. doi: 10.3321/j.issn:1002-1582.2004.01.032

    YAN J X, YU X. Effect of the turbulence on the image resolution of the remote sensing system[J]. Optical Technique, 2004, 30(1): 68-69. (in Chinese) doi: 10.3321/j.issn:1002-1582.2004.01.032
    [14]
    王仁礼, 郝振纯, 陈波, 等. 大气湍流对天基遥感系统地面分辨率的影响[J]. 测绘科学技术学报,2009,26(2):114-117. doi: 10.3969/j.issn.1673-6338.2009.02.010

    WANG R L, HAO ZH CH, CHEN B, et al. Effect of atmospheric turbulence on image ground-resolution of space-based remote sensing system[J]. Journal of Geomatics Science and Technology, 2009, 26(2): 114-117. (in Chinese) doi: 10.3969/j.issn.1673-6338.2009.02.010
    [15]
    陈欣欣, 苑克娥, 时东锋, 等. 大气湍流对空基光学成像系统影响的仿真研究[J]. 光学学报,2022,42(18):1801002. doi: 10.3788/AOS202242.1801002

    CHEN X X, YUAN K E, SHI D F, et al. Simulation study on effect of atmospheric turbulence on space-based optical imaging system[J]. Acta Optica Sinica, 2022, 42(18): 1801002. (in Chinese) doi: 10.3788/AOS202242.1801002
    [16]
    刘思臻, 任德清. 基于YAO软件的太阳地表层自适应光学系统的仿真[J]. 激光与光电子学进展,2017,54(9):090101.

    LIU S ZH, REN D Q. Simulation on solar ground-layer adaptive optics system based on YAO software[J]. Laser &Optoelectronics Progress, 2017, 54(9): 090101. (in Chinese)
    [17]
    HUFNAGEL R E. Variations of atmospheric turbulence[C]. Digest of Topical Meeting on Optical Propagation Through Turbulence, Washington, D.C. Optical Society of America, 1974.
    [18]
    张逸新, 迟泽英. 光波在大气中的传输与成像[M]. 北京: 国防工业出版社, 1997.

    ZHANG Y X, CHI Z Y. Transmission and Imaging of Light Waves in the Atmosphere[M]. Beijing: National Defense Industry Press, 1997. (in Chinese)
    [19]
    NOLL R J. Zernike polynomials and atmospheric turbulence[J]. Journal of the Optical Society of America, 1976, 66(3): 207-211. doi: 10.1364/JOSA.66.000207
    [20]
    胡立发, 刘永军, 曹召良, 等. 液晶湍流模拟器的研制[C]. 中国科学院液晶相关研究学术研讨会, 中国物理学会, 2005.

    HU L F, LIU Y J, CAO ZH L, et al. . Development of liquid crystal turbulence simulator[C]. Chinese Academy of Sciences LCD Related Research Symposium, Chinese Physical Society, 2005. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(12)  / Tables(1)

    Article views(487) PDF downloads(280) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return