Volume 16 Issue 3
May  2023
Turn off MathJax
Article Contents
YAN De-xian, CHEN Xin-yi, FENG Qin-yin, LU Zi-jun, ZHANG He, LI Xiang-jun, LI Ji-ning. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Chinese Optics, 2023, 16(3): 514-522. doi: 10.37188/CO.2022-0195
Citation: YAN De-xian, CHEN Xin-yi, FENG Qin-yin, LU Zi-jun, ZHANG He, LI Xiang-jun, LI Ji-ning. A vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Chinese Optics, 2023, 16(3): 514-522. doi: 10.37188/CO.2022-0195

A vanadium dioxide-assisted switchable multifunctional metamaterial structure

doi: 10.37188/CO.2022-0195
Funds:  Supported by the National Project of Inovation and Entrepreneurship Training for Undergraduates (No. 202110356012); National Natural Science Foundation of China (No. 62001444)
  • Received Date: 19 Sep 2022
  • Rev Recd Date: 19 Oct 2022
  • Accepted Date: 25 Nov 2022
  • Available Online: 09 Dec 2022
  • In this paper, a multifunctional metamaterial device based on the phase transition properties of vanadium dioxide (VO2) is proposed. The metamaterial structure consists of a top layer combined with VO2-filled Split Ring Resonator (SRR) and a metal cross, a polyimide (PI) dielectric layer, and a metal substrate. When the VO2 is in the insulating state, the cross-polarization conversion function can be realized, and its Polarization Conversion Rate (PCR) is greater than 90% in the range of 0.48-0.87 THz. When the VO2 is in the metallic state, the device can realize dual-frequency absorption and be applied in high-sensitivity sensing functions. The absorption rates are higher than 88% at the frequencies of 1.64 THz and 2.15 THz. By changing the refractive index of the sample material, the sensing sensitivities at the two related frequencies are about 25.6 GHz/RIU and 159 GHz/RIU, and the Q-factors are 71.34 and 23.12, respectively. The proposed metamaterial multifunctional device exhibits the advantages of a simple structure, a switchable function, and high-efficiency polarization conversion, and provides potential application value in future terahertz communication, imaging and other fields.

     

  • loading
  • [1]
    蔡禾, 郭雪娇, 和挺, 等. 太赫兹技术及其应用研究进展[J]. 中国光学与应用光学,2010,3(3):209-222.

    CAI H, GUO X J, HE T, et al. Terahertz wave and its new applications[J]. Chinese Journal of Optics and Applied Optics, 2010, 3(3): 209-222. (in Chinese)
    [2]
    曹丙花, 张宇盟, 范孟豹, 等. 太赫兹超分辨率成像研究进展[J]. 中国光学,2022,15(3):405-417. doi: 10.37188/CO.2021-0198

    CAO B H, ZHANG Y M, FAN M B, et al. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 2022, 15(3): 405-417. (in Chinese) doi: 10.37188/CO.2021-0198
    [3]
    YAN D X, WANG Y, QIU Y, et al. A review: the functional materials-assisted terahertz metamaterial absorbers and polarization converters[J]. Photonics, 2022, 9(5): 335. doi: 10.3390/photonics9050335
    [4]
    DRISCOLL T, KIM H T, CHAE B G, et al. Memory metamaterials[J]. Science, 2009, 325(5947): 1518-1521. doi: 10.1126/science.1176580
    [5]
    张检发, 袁晓东, 秦石乔. 可调太赫兹与光学超材料[J]. 中国光学,2014,7(3):349-364.

    ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    [6]
    XU SH T, FAN F, WANG Y H, et al. Intensity-tunable terahertz bandpass filters based on liquid crystal integrated metamaterials[J]. Applied Optics, 2021, 60(30): 9530-9534. doi: 10.1364/AO.439400
    [7]
    LIU W W, XU J SH, SONG ZH Y. Bifunctional terahertz modulator for beam steering and broadband absorption based on a hybrid structure of graphene and vanadium dioxide[J]. Optics Express, 2021, 29(15): 23331-23340. doi: 10.1364/OE.433364
    [8]
    HUANG CH CH, ZHANG Y G, LIANG L J, et al. Perovskite-based multi-dimension THz modulation of EIT-like metamaterials[J]. Optik, 2022, 262: 169348. doi: 10.1016/j.ijleo.2022.169348
    [9]
    ZHANG H Y, YANG CH H, LIU M, et al. Dual-function tuneable asymmetric transmission and polarization converter in terahertz region[J]. Results in Physics, 2021, 25: 104242. doi: 10.1016/j.rinp.2021.104242
    [10]
    付娆, 李子乐, 郑国兴. 超构表面的振幅调控及其功能器件研究进展[J]. 中国光学,2021,14(4):886-899. doi: 10.37188/CO.2021-0017

    FU R, LI Z L, ZHENG G X. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. (in Chinese) doi: 10.37188/CO.2021-0017
    [11]
    WU X L, ZHENG Y, LUO Y, et al. A four-band and polarization-independent BDS-based tunable absorber with high refractive index sensitivity[J]. Physical Chemistry Chemical Physics, 2021, 23(47): 26864-26873. doi: 10.1039/D1CP04568G
    [12]
    黄成成, 张永刚, 梁兰菊, 等. 窄/宽带可切换的石墨烯-二氧化钒复合结构太赫兹吸波器[J]. 光学学报,2022,42(19):1916001. doi: 10.3788/AOS202242.1916001

    HUANG CH CH, ZAHNG Y G, LIANG L J, et al. Narrow/broad band switchable Terahertz absorber based on graphene and vanadium dioxide composite structure[J]. Acta Optica Sinica, 2022, 42(19): 1916001. (in Chinese) doi: 10.3788/AOS202242.1916001
    [13]
    李向军, 候小梅, 程钢, 等. 基于柔性基底动态调焦石墨烯超表面聚焦反射镜的仿真研究[J]. 中国光学,2021,14(4):1019-1028. doi: 10.37188/CO.2020-0171

    LI X J, HOU X M, CHENG G, et al. Simulation on tunable graphene metasurface focusing mirror based on flexible substrate[J]. Chinese Optics, 2021, 14(4): 1019-1028. (in Chinese) doi: 10.37188/CO.2020-0171
    [14]
    冀允允, 范飞, 于建平, 等. 太赫兹液晶可调谐功能器件[J]. 中国激光,2019,46(6):0614006. doi: 10.3788/CJL201946.0614006

    JI Y Y, FAN F, YU J P, et al. Terahertz tunable devices based on liquid crystal[J]. Chinese Journal of Lasers, 2019, 46(6): 0614006. (in Chinese) doi: 10.3788/CJL201946.0614006
    [15]
    曹暾, 刘宽, 李阳, 等. 可调谐光学超构材料及其应用[J]. 中国光学,2021,14(4):968-985. doi: 10.37188/CO.2021-0080

    CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080
    [16]
    CHENG J R, FAN F, CHANG SH J. Recent progress on graphene-functionalized metasurfaces for tunable phase and polarization control[J]. Nanomaterials, 2019, 9(3): 398. doi: 10.3390/nano9030398
    [17]
    李靖豪, 杨琬琛, 周晨昱, 等. 二氧化钒的相变调控特性及可重构超表面天线应用研究[J]. 无线电工程,2022,52(2):317-325. doi: 10.3969/j.issn.1003-3106.2022.02.024

    LI J H, YANG W CH, ZHOU CH Y, et al. Research on metal-insulating transition of vanadium dioxide and its applications on reconfigurable metasurface antenna[J]. Radio Engineering, 2022, 52(2): 317-325. (in Chinese) doi: 10.3969/j.issn.1003-3106.2022.02.024
    [18]
    LIU M, KANG W J, ZHANG Y L, et al. Dynamically controlled terahertz coherent absorber engineered with VO2-integrated Dirac semimetal metamaterials[J]. Optics Communications, 2022, 503: 127443. doi: 10.1016/j.optcom.2021.127443
    [19]
    QIAO Q, WANG Y K, YANG G F, et al. Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array[J]. Optical Materials Express, 2021, 11(9): 2952-2965. doi: 10.1364/OME.436327
    [20]
    YANG CH H, GAO Q G, DAI L L, et al. Bifunctional tunable terahertz circular polarization converter based on Dirac semimetals and vanadium dioxide[J]. Optical Materials Express, 2020, 10(9): 2289-2303. doi: 10.1364/OME.404244
    [21]
    付亚男, 张新群, 赵国忠, 等. 基于谐振环的太赫兹宽带偏振转换器件研究[J]. 物理学报,2017,66(18):180701. doi: 10.7498/aps.66.180701

    FU Y N, ZHANG X Q, ZHAO G ZH, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 180701. (in Chinese) doi: 10.7498/aps.66.180701
    [22]
    HE ZH H, LI L Q, MA H Q, et al. Graphene-based metasurface sensing applications in terahertz band[J]. Results in Physics, 2021, 21: 103795. doi: 10.1016/j.rinp.2020.103795
    [23]
    YAN D X, FENG Q Y, YUAN Z W, et al. Wideband switchable dual-functional terahertz polarization converter based on vanadium dioxide-assisted metasurface[J]. Chinese Physics B, 2022, 31(1): 014211. doi: 10.1088/1674-1056/ac05a7
    [24]
    高鹏, 陈聪, 刘海, 等. 基于二氧化钒相变的可调谐超材料吸收器设计[J]. 量子光学学报,2022,28(1):37-45.

    GAO P, CHEN C, LIU H, et al. Design of adjustable metamaterial absorber based on the phase transition of vanadium dioxide[J]. Journal of Quantum Optics, 2022, 28(1): 37-45. (in Chinese)
    [25]
    BAN SH H, MENG H Y, ZHAI X, et al. Tunable triple-band and broad-band convertible metamaterial absorber with bulk Dirac semimetal and vanadium dioxide[J]. Journal of Physics D:Applied Physics, 2021, 54(17): 174001. doi: 10.1088/1361-6463/abdd65
    [26]
    封覃银, 裘国华, 严德贤, 等. 基于二氧化钒宽、窄带可切换的双功能超材料吸收器研究[J]. 中国光学,2022,15(2):388-404.

    FENG Q Y, QIU G H, YAN D X, et al. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 388-404. (in Chinese)
    [27]
    QIU Y, YAN D X, FENG Q Y, et al. Vanadium dioxide-assisted switchable multifunctional metamaterial structure[J]. Optics Express, 2022, 30(15): 26544-26556. doi: 10.1364/OE.465062
    [28]
    FENG Q Y, YAN D X, LI X J, et al. Realization of absorption, filtering, and sensing in a single metamaterial structure combined with functional materials[J]. Applied Optics, 2022, 61(15): 4336-4343. doi: 10.1364/AO.459406
    [29]
    FERRARO A, ZOGRAFOPOULOS D C, CAPUTO R, et al. Guided-mode resonant narrowband terahertz filtering by periodic metallic stripe and patch arrays on cyclo-olefin substrates[J]. Scientific Reports, 2018, 8(1): 17272. doi: 10.1038/s41598-018-35515-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(420) PDF downloads(286) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return