Volume 16 Issue 3
May  2023
Turn off MathJax
Article Contents
ZHANG Jia-qi, GUO Yi-bo, ZHANG You-jian, ZHANG Zhi-hua. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194
Citation: ZHANG Jia-qi, GUO Yi-bo, ZHANG You-jian, ZHANG Zhi-hua. Design of reflector assembly and adhesive layer under airborne wide temperature conditions[J]. Chinese Optics, 2023, 16(3): 578-586. doi: 10.37188/CO.2022-0194

Design of reflector assembly and adhesive layer under airborne wide temperature conditions

doi: 10.37188/CO.2022-0194
Funds:  Supported by the Major Research plan of the National Natural Science Foundation of China (No. 91338116)
More Information
  • Corresponding author: zjq_cust@foxmail.com
  • Received Date: 16 Sep 2022
  • Rev Recd Date: 08 Oct 2022
  • Accepted Date: 02 Nov 2022
  • Available Online: 09 Dec 2022
  • Airborne ambient temperature varies widely and airborne vibration can be strong. Because there is a difference in the thermal expansion coefficients of an Invar inlay and mirror material, a mirror’s higher coating temperature means that the traditional bonding process will lead to bonding failure and the surface precision of the mirror cannot meet system requirements. Therefore, this paper proposes a new method of bonding the mirror after processing and coating, and designs some important parameters for the adhesive layer. RTV is used as the main binder for the mirror and the inlay, and the effect of RTV curing on the structure is alleviated by favorable elasticity. The thickness of RTV is 1.1 mm, its width is 7.2 mm and the thickness of the epoxy adhesive is 0.022 mm. The simulation results show that the RMS of the mirror shape is 25.91 nm and the first-order frequency of the mirror group mode is 242 Hz when the gravity is 1 g and temperature change are −40 °C (the initial temperature is 20 °C). The final surface detection RMS is 15.8 nm and the resonance frequency is 213 Hz. The experimental results show that the design, structure and bonding layer can meet the wide temperature range and vibration requirements.

     

  • loading
  • [1]
    张美君. 航空相机反射镜支撑结构优化设计及环境适应性分析[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2022.

    ZHANG M J. Optimal design and environmental adaptability analysis for mounting mirror in an aerial camera[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2022. (in Chinese)
    [2]
    KIM H, YANG H S. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering, 2013, 52(9): 091806. doi: 10.1117/1.OE.52.9.091806
    [3]
    WEINGROD I, CHOU C Y, HOLMES B, et al. Design of bipod flexure mounts for the IRIS spectrometer[J]. Proceedings of SPIE, 2013, 8836: 88360Q. doi: 10.1117/12.2024478
    [4]
    EKINCI M, SELIMOĞLU Ö. Development of a 0.5 m clear aperture cassegrain type collimator telescope[J]. Proceedings of SPIE, 2016, 9912: 991253.
    [5]
    范磊, 张景旭, 赵勇志, 等. 中型主镜的柔性半运动学支撑[J]. 光学 精密工程,2016,24(8):1965-1972. doi: 10.3788/OPE.20162408.1965

    FAN L, ZHANG J X, ZHAO Y ZH, et al. Flexible semi-kinematic support for middling primary mirror[J]. Optics and Precision Engineering, 2016, 24(8): 1965-1972. (in Chinese) doi: 10.3788/OPE.20162408.1965
    [6]
    丁帅. 机载红外小目标探测系统非均匀性校正技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021.

    DING SH. Research on non-uniformity correction technology of airborne infrared small target detection system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021. (in Chinese)
    [7]
    邵梦旗, 张雷, 李林, 等. 超轻空间相机主支撑背板的优化设计[J]. 光学学报,2019,39(3):0322001. doi: 10.3788/AOS201939.0322001

    SHAO M Q, ZHANG L, LI L, et al. Optimization design of supporting backplate for ultra-light space camera[J]. Acta Optica Sinica, 2019, 39(3): 0322001. (in Chinese) doi: 10.3788/AOS201939.0322001
    [8]
    陈家照, 黄闽翔, 王学仁, 等. 几种典型的橡胶材料本构模型及其适用性[J]. 材料导报,2015,29(S1):118-120,124.

    CHEN J ZH, HUANG M X, WANG X R, et al. Typical constitutive models of rubber materials and their ranges of application[J]. Materials Review, 2015, 29(S1): 118-120,124. (in Chinese)
    [9]
    庞文武, 陈炳耀, 陈德启, 等. 脱醇型室温硫化硅橡胶的粘接性能研究[J]. 有机硅材料,2022,36(1):57-60. doi: 10.11941/j.issn.1009-4369.2022.01.012

    PANG W W, CHEN B Y, CHEN D Q, et al. Study on the adhesive properties of dealcoholized RTV silicone rubber[J]. Silicone Material, 2022, 36(1): 57-60. (in Chinese) doi: 10.11941/j.issn.1009-4369.2022.01.012
    [10]
    杨亮, 李朝辉, 乔克. 某空间反射镜支撑装调技术[J]. 红外与激光工程,2013,42(12):3277-3282. doi: 10.3969/j.issn.1007-2276.2013.12.022

    YANG L, LI ZH H, QIAO K. Support structure and assembling technique of a space mirror[J]. Infrared and Laser Engineering, 2013, 42(12): 3277-3282. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.12.022
    [11]
    张琦, 时剑文, 索双富, 等. 基于Mooney-Rivlin模型和Yeoh模型的橡胶材料有限元分析[J]. 合成橡胶工业,2020,43(6):468-471. doi: 10.3969/j.issn.1000-1255.2020.06.006

    ZHANG Q, SHI J W, SUO SH F, et al. Finite element analysis of rubber materials based on Mooney-Rivlin models and Yeoh models[J]. China Synthetic Rubber Industry, 2020, 43(6): 468-471. (in Chinese) doi: 10.3969/j.issn.1000-1255.2020.06.006
    [12]
    韩旭, 吴清文, 董得义, 等. 室温硫化胶层建模在透镜结构分析中的应用[J]. 光学 精密工程,2010,18(1):118-125.

    HAN X, WU Q W, DONG D Y, et al. Application of RTV adhesive modeling to structure analysis of reflective mirror[J]. Optics and Precision Engineering, 2010, 18(1): 118-125. (in Chinese)
    [13]
    崔永鹏, 何欣, 张凯. 钛合金和碳纤维的粘接技术[J]. 光学技术,2012,38(1):125-128. doi: 10.13741/j.cnki.11-1879/o4.2012.01.020

    CUI Y P, HE X, ZHANG K. Technique of cementation between the titanium alloys and carbon fibers[J]. Optical Technique, 2012, 38(1): 125-128. (in Chinese) doi: 10.13741/j.cnki.11-1879/o4.2012.01.020
    [14]
    刘波, 丁亚林, 贾继强, 等. 反射镜背部嵌套粘接支撑结构的设计与分析[J]. 激光与光电子学进展,2013,50(9):091201.

    LIU B, DING Y L, JIA J Q, et al. Design and analysis of back embedded adhesive structure for mirror support[J]. Laser &Optoelectronics Progress, 2013, 50(9): 091201. (in Chinese)
    [15]
    孙冬明, 潘栋, 刘宏旭, 等. 胶层厚度对多点支撑光窗面形的影响[J]. 激光与红外,2021,51(4):480-485. doi: 10.3969/j.issn.1001-5078.2021.04.013

    SUN D M, PAN D, LIU H X, et al. Influence of adhesive layer thickness on surface shape of multi-point supported light window[J]. Laser &Infrared, 2021, 51(4): 480-485. (in Chinese) doi: 10.3969/j.issn.1001-5078.2021.04.013
    [16]
    付佐红, 董高彬, 程驰青, 等. 天线随机振动分析与设计优化[J]. 雷达与对抗,2022,42(1):33-37. doi: 10.19341/j.cnki.1009-0401.2022.01.009

    FU Z H, DONG G B, CHENG CH Q, et al. Random vibration analysis and design optimization of an antenna[J]. Radar &ECM, 2022, 42(1): 33-37. (in Chinese) doi: 10.19341/j.cnki.1009-0401.2022.01.009
    [17]
    段飞飞, 王田宇, 温业堃, 等. 飞行器随机振动试验技术应用研究[J]. 电子产品可靠性与环境试验,2022,40(2):56-59. doi: 10.3969/j.issn.1672-5468.2022.02.012

    DUAN F F, WANG T Y, WEN Y K, et al. Research on the application of random vibration test technology of aircraft[J]. Electronic Product Reliability and Environmental Testing, 2022, 40(2): 56-59. (in Chinese) doi: 10.3969/j.issn.1672-5468.2022.02.012
    [18]
    梁子健, 杨甬英, 赵宏洋, 等. 非球面光学元件面型检测技术研究进展与最新应用[J]. 中国光学,2022,15(2):161-186. doi: 10.37188/CO.2021-0143

    LIANG Z J, YANG Y Y, ZHAO H Y, et al. Advances in research and applications of optical aspheric surface metrology[J]. Chinese Optics, 2022, 15(2): 161-186. (in Chinese) doi: 10.37188/CO.2021-0143
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(2)

    Article views(436) PDF downloads(235) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return