Volume 16 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
LV Jing-wei, WANG De-bao, LIU Chao, LIU Qiang, WANG Jian-xin, YANG Lin, MU Hai-wei, PAUL K CHU. Multiple Fano resonance properties of nanoring-heptamer metal-dielectric structures[J]. Chinese Optics, 2023, 16(1): 214-227. doi: 10.37188/CO.2022-0170
Citation: LV Jing-wei, WANG De-bao, LIU Chao, LIU Qiang, WANG Jian-xin, YANG Lin, MU Hai-wei, PAUL K CHU. Multiple Fano resonance properties of nanoring-heptamer metal-dielectric structures[J]. Chinese Optics, 2023, 16(1): 214-227. doi: 10.37188/CO.2022-0170

Multiple Fano resonance properties of nanoring-heptamer metal-dielectric structures

doi: 10.37188/CO.2022-0170
Funds:  Supported by Natural Science Foundation Projects in Heilongjiang Province (No. LH2021F007);China Postdoctoral Science Foundation (No. 2020M670881);Study Abroad returnees merit-based Aid Foundation in Heilongjiang Province (No. 070-719900103);Northeastern Petroleum University Scientific Research Projects (No. 2019KQ74);Strategic Research Fund of the City University of Hong Kong (SRG) (No. 7005505)
More Information
  • Author Bio:

    Lv Jingwei (1991—), born in Daqing, Heilongjiang Province, lecturer, master supervisor, mainly engaged in the research of surface plasmon resonance technology and nano-functional materials. E-mail: lvjingwei2009123@126.com

    Liu Chao (1978—), born in Mulan, Heilongjiang Province, professor, doctoral supervisor, mainly engaged in the research of the basic theory and application of optical fiber surface plasmon resonance sensing, published more than 80 SCI papers in Opt. Exp, Nanomaterials, Opt. Mater. Exp., Res. Phys., Appl. Surf. Sci., IEEE Photon. Technol. Lett. and other journals, many of which were selected as high cited papers of ESI. E-mail: msm-liu@126.com

  • Corresponding author: msm-liu@126.com
  • Received Date: 23 Jul 2022
  • Rev Recd Date: 06 Sep 2022
  • Available Online: 28 Oct 2022
  • In order to achieve tunable multiple Fano resonance characteristics and design a refractive index sensor with high sensitivity, a nanoring-heptamer metal-dielectric composite nanoantenna structure is proposed, and the influencing factors and variation rules of its Fano resonance characteristics are studied by using the Finite Element Method (FEM). Researches show that Fano resonance characteristics of the hybrid nano-antenna is sensitive to the changes of the height, incident angle and internal gap. In addition, the electric intensity and the Purcell factor (PF) under the excitation of the electric dipole source can reach 134.74 V/m and 3214 respectively, which greatly enhances the electric intensity near the center of the nanoantenna. The hybrid nanoantenna has high Sensitivity (S) (1400 nm/RIU) and Figure of Merit (FOM) (17 RIU−1), respectively, which can be used as two significant performance indices for evaluating the refractive index sensor with high sensitivity. This paper provides a feasible way to realize the tunability of Fano resonance in the composite nanoantenna and a solid theoretical basis for practical applications such as surface-enhanced Raman scattering, quantum emitters, and refractive index sensors.

     

  • loading
  • [1]
    ZHELUDEV N I. What diffraction limit?[J]. Nature Materials, 2008, 7(6): 420-422. doi: 10.1038/nmat2163
    [2]
    SONG M K, MA Y P, LIU H, et al. High resolution of plasmonic resonance scattering imaging with deep learning[J]. Analytical Chemistry, 2022, 94(11): 4610-4616. doi: 10.1021/acs.analchem.1c04330
    [3]
    GRAMOTNEV D K, BOZHEVOLNYI S I. Plasmonics beyond the diffraction limit[J]. Nature Photonics, 2010, 4(2): 83-91. doi: 10.1038/nphoton.2009.282
    [4]
    FRISCHWASSER K, COHEN K, TSESSES S, et al. Nonlinear forced response of plasmonic nanostructures[J]. Physical Review Letters, 2022, 128(10): 103901. doi: 10.1103/PhysRevLett.128.103901
    [5]
    LIU W, HU CH J, ZHOU L, et al. A square-lattice D-shaped photonic crystal fiber sensor based on SPR to detect analytes with large refractive indexes[J]. Physica E:Low-dimensional Systems and Nanostructures, 2022, 138: 115106. doi: 10.1016/j.physe.2021.115106
    [6]
    WELFORD K. Surface plasmon-polaritons and their uses[J]. Optical and Quantum Electronics, 1991, 23(1): 1-27. doi: 10.1007/BF00619516
    [7]
    LIU W, SHI Y, YI Z, et al. Surface plasmon resonance chemical sensor composed of a microstructured optical fiber for the detection of an ultra-wide refractive index range and gas-liquid pollutants[J]. Optics Express, 2021, 29(25): 40734-40747. doi: 10.1364/OE.444323
    [8]
    LIU W, HU CH J, ZHOU L, et al. A highly sensitive D-type photonic crystal fiber infrared sensor with indium tin oxide based on surface plasmon resonance[J]. Modern Physics Letters B, 2022, 36(1): 2150499. doi: 10.1142/S0217984921504996
    [9]
    LIMONOV M F, RYBIN M V, PODDUBNY A N, et al. Fano resonances in photonics[J]. Nature Photonics, 2017, 11(9): 543-554. doi: 10.1038/nphoton.2017.142
    [10]
    ZHANG Y T. Photon-assisted Fano resonance tunneling periodic double-well potential characteristics[J]. Chinese Optics, 2021, 14(5): 1251-1258. doi: 10.37188/CO.2020-0068
    [11]
    LUO L N, WANG Y K, NIE J Y, et al. Fano resonance properties of the arrays of metallic half-ring/rectangle structure[J]. Chinese Optics, 2015, 8(3): 360-367. doi: 10.3788/co.20150803.0360
    [12]
    HOSSAIN M K, DRMOSH Q A. Silver nanoparticles and nanorings for surface-enhanced Raman scattering[J]. Plasmonics, 2022, 17(3): 1051-1064. doi: 10.1007/s11468-021-01572-w
    [13]
    ZHANG R X, DU CH L, SUN L, et al. Individual split au square nanorings for surface-enhanced Raman and hyper-Raman scattering[J]. Plasmonics, 2022, 17(3): 965-971. doi: 10.1007/s11468-021-01582-8
    [14]
    RAZAVI Z, PAKARZADEH H. Third-harmonic generation in optical nanoantennas: efficiency enhancement[J]. The European Physical Journal Plus, 2022, 137(2): 183. doi: 10.1140/epjp/s13360-022-02378-3
    [15]
    ALTUG H, OH S H, MAIER S A, et al. Advances and applications of nanophotonic biosensors[J]. Nature Nanotechnology, 2022, 17(1): 5-16. doi: 10.1038/s41565-021-01045-5
    [16]
    BEUTLER H. Über Absorptionsserien von Argon, Krypton und Xenon zu Termen zwischen den beiden Ionisierungsgrenzen2 $ P^{2/0}_3 $ und2 $P^{2/0}_1 $[J]. Z. Physik, 1935, 93(3): 177-196.
    [17]
    FANO U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d'arco[J]. Il Nuovo Cimento (1924-1942), 1935, 12(3): 154-161.
    [18]
    YE J, WEN F F, SOBHANI H, et al. Plasmonic nanoclusters: near field properties of the fano resonance interrogated with SERS[J]. Nano Letters, 2012, 12(3): 1660-1667. doi: 10.1021/nl3000453
    [19]
    YANG Q L, ZHANG X F, LIU F SH, et al. Multiple Fano resonances in gold split ring disk dimers[J]. Acta Physics Sinica, 2022, 71(2): 027802. (in Chinese) doi: 10.7498/aps.71.20210855
    [20]
    YORULMAZ M, HOGGARD A, ZHAO H Q, et al. Absorption Spectroscopy of an Individual Fano Cluster[J]. Nano Letters, 2016, 16(10): 6497-6503. doi: 10.1021/acs.nanolett.6b03080
    [21]
    ZHENG J D, LU H, XUAN X, et al. Plasmonic Fano-like resonance in double-stacked graphene nanostrip arrays[J]. Journal of the Optical Society of America B, 2022, 39(3): 843-850. doi: 10.1364/JOSAB.449405
    [22]
    YANG L, WANG J CH, YANG L ZH, et al. Characteristics of multiple Fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory[J]. Scientific Reports, 2018, 8(1): 2560. doi: 10.1038/s41598-018-20952-7
    [23]
    KONG Y, CAO J J, QIAN W CH, et al. Multiple fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]. IEEE Photonics Journal, 2018, 10(6): 6804410.
    [24]
    PALIK E D. Handbook of Optical Constants of Solids[M]. New York: Academic Press, 1985.
    [25]
    LV J W, MU H W, LIU Q, et al. Multi-wavelength unidirectional forward scattering in the visible range in an all-dielectric silicon hollow nanodisk[J]. Applied Optics, 2018, 57(17): 4771-4776. doi: 10.1364/AO.57.004771
    [26]
    ROCCO D, LAMPRIANIDIS A, MIROSHNICHENKO A E, et al. Giant electric and magnetic Purcell factor in dielectric oligomers[J]. Journal of the Optical Society of America B, 2020, 37(9): 2738-2744. doi: 10.1364/JOSAB.399665
    [27]
    DENG Q R, CHEN J F, LONG L, et al. Silicon cuboid nanoantenna with simultaneous large Purcell factor for electric dipole, magnetic dipole and electric quadrupole emission[J]. Opto-Electronic Advances, 2022, 5(2): 210024. doi: 10.29026/oea.2022.210024
    [28]
    LIU Q, JIANG Y, HU CH J, et al. High-sensitivity surface plasmon resonance sensor based on the ten-fold eccentric core quasi-D-shaped photonic quasi-crystal fiber coated with indium tin oxide[J]. Chinese Optics, 2022, 15(1): 101-110. doi: 10.37188/CO.EN.2021-0006
    [29]
    BAZGIR M, JALALPOUR M, ZARRABI F B, et al. Design of an optical switch and sensor based on a MIM coupled waveguide using a DNA composite[J]. Journal of Electronic Materials, 2020, 49(3): 2173-2178. doi: 10.1007/s11664-019-07902-3
    [30]
    GHODSI F, DASHTI H, AHMADI-SHOKOUH J. Design of a multilayer nano-antenna as a hyperbolic metamaterial with Fano response for optical sensing[J]. Optical and Quantum Electronics, 2020, 52(6): 316. doi: 10.1007/s11082-020-02431-4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(398) PDF downloads(229) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return