Turn off MathJax
Article Contents
YANG Yi, ZHANG Xiangxiang, LU Yu, KONG W J. Design of solar concentrated uniform line light source of composite ellipsoid cavity[J]. Chinese Optics. doi: 10.37188/CO.2022-0138
Citation: YANG Yi, ZHANG Xiangxiang, LU Yu, KONG W J. Design of solar concentrated uniform line light source of composite ellipsoid cavity[J]. Chinese Optics. doi: 10.37188/CO.2022-0138

Design of solar concentrated uniform line light source of composite ellipsoid cavity

doi: 10.37188/CO.2022-0138
More Information
  • Corresponding author: 2013040009@tute.edu.cn
  • Received Date: 21 Jun 2022
  • Accepted Date: 04 Aug 2022
  • Available Online: 15 Sep 2022
  • Objective: In order to implement a solar direct pumping slab high power laser, a linear uniform high-power density pump source is studied. Method: In this paper, the design method of a high-power density uniform linear light source is proposed by combining the first-order concentrating system with seven confocal ellipsoids to form a composite ellipsoid cavity. Each ellipsoid realizes the equal radiation flux segmentation of the circular first focal spot. The mirror imaging characteristics do not significantly decrease the peak power density. After decomposition, the mirror spot forms a uniform linear light source at the second point of focus. The mathematical model of equal radiation flux is given by coordinate changes, and the rotation and translation parameters of each ellipsoid are solved by the annealing algorithm. Result: The first-order system is composed of a Fresnel lens with a radius of 30 mm, a focal length of 70 mm and with a = 3.4 mm, c = 3.15 mm single ellipsoidal cavity. The second-order composite ellipsoidal cavity concentrating system is attached. The effective length is 12 mm, the peak power density is 1.09 × 106 W/m2, and the uniformity is 95.46 %. Conclusion: Compared with the contribution of each ellipsoid parameter to the uniformity, the uniformity effect is significantly improved when the rotation parameter θ of the middle ellipsoid is 1.4°. The change of the edge ellipsoid parameter Δ has a significant influence on the effective length of the linear light source, and its optimal value is 0.53 mm.


  • loading
  • [1]
    HAN X Y, SUN Y, HUANG J, et al. Design and analysis of a CPV/T solar receiver with volumetric absorption combined spectral splitter[J]. International Journal of Energy Research, 2020, 44(6): 4837-4850. doi: 10.1002/er.5277
    ZHOU ZH G, WANG Z, BERMEL P. Radiative cooling for low-bandgap photovoltaics under concentrated sunlight[J]. Optics Express, 2019, 27(8): A404-A418. doi: 10.1364/OE.27.00A404
    KOST C, MAYER J N, THOMSON J, et al. . Levelized cost of electricity: PV and CPV in comparison to other technologies[C]. Proceedings of the 29th European Photovoltaic Solar Energy Conference and Exhibition, European Commission, 2014: 4086.
    NOZIK A J, CONIBEER G, BEARD M C. Advanced Concepts in Photovoltaics[M]. Cambridge: Royal Society of Chemistry Press, 2014.
    Solar one and solar two[EB/OL].https://www.atlasobscura.com/places/solar-one-and-solar-two. (查阅所有网上资料,未找到本条文献日期信息,请联系作者确认补充)
    孟宪龙, 刘备, 段辰星, 等. 一种新型槽式太阳能CPV/T聚光器的光学传输特性[J]. 光学学报,2021,41(15):1522002. doi: 10.3788/AOS202141.1522002

    MENG X L, LIU B, DUAN CH X, et al. Optical transmission characteristic of novel trough type CPV/T concentrator[J]. Acta Optica Sinica, 2021, 41(15): 1522002. (in Chinese) doi: 10.3788/AOS202141.1522002
    尹勇, 杨洪海, 苏亚欣, 等. 聚光型太阳能光伏光热系统研究进展[J]. 热能动力工程,2022,37(1):1-13.

    YIN Y, YANG H H, SU Y X, et al. Research progress of solar concentrating photovoltaic-thermal system[J]. Journal of Engineering for Thermal Energy and Power, 2022, 37(1): 1-13. (in Chinese)
    TIBÚRCIO B D, LIANG D W, ALMEIDA J, et al. Improving solar-pumped laser efficiency by a ring-array concentrator[J]. Journal of Photonics for Energy, 2018, 8(1): 018002.
    LIANG D W, VISTAS C R, TIBÚRCIO B D, et al. Solar-pumped Cr: Nd: YAG ceramic laser with 6.7% slope efficiency[J]. Solar Energy Materials and Solar Cells, 2018, 185: 75-79. doi: 10.1016/j.solmat.2018.05.020
    LIANG D W, VISTAS C R, ALMEIDA J, et al. Side-pumped continuous-wave Nd: YAG solar laser with 5.4% slope efficiency[J]. Solar Energy Materials and Solar Cells, 2019, 192: 147-153. doi: 10.1016/j.solmat.2018.12.029
    YABE T, MOHAMED M S, UCHIDA S, et al. Noncatalytic dissociation of MgO by laser pulses towards sustainable energy cycle[J]. Journal of Applied Physics, 2007, 101(12): 123106. doi: 10.1063/1.2743730
    SAIKI T, UCHIDA S, MOTOKOSHI S, et al. . Development of solar-pumped lasers for space solar power station[C]. Proceedings of the 56th International Astronautical Congress, International Astronautical Federation, 2005: 4250. (查阅所有网上资料, 未找到本条文献出版者信息, 请联系作者确认)
    YABE T, OHKUBO T, UCHIDA T, et al. Experimental study of solar pumped laser for magnesium-hydrogen energy cycle[J]. Journal of Physics:Conference Series, 2008, 112: 042072. doi: 10.1088/1742-6596/112/4/042072
    胡金萍. 聚光光斑的均匀性对聚光光伏系统性能影响的理论研究[D]. 南京: 南京理工大学, 2018.

    HU J P. Theoretical study on how the non-uniformity of the sunlight spot influences the performance of the concentrating photovoltaic system[D]. Nanjing: Nanjing University of Science and Technology, 2018. (in Chinese)
    马军, 王成龙, 夏养君. 线性菲涅尔式太阳能聚光系统二次聚光器研究进展[J]. 中国科学:技术科学,2020,50(8):997-1008. doi: 10.1360/SST-2020-0190

    MA J, WANG CH L, XIA Y J. Research progress on secondary concentrator for linear Fresnel reflector[J]. Cientia Sinica Technologica, 2020, 50(8): 997-1008. (in Chinese) doi: 10.1360/SST-2020-0190
    黄媛. 复合抛物面聚光器的性能分析和应用研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2019.

    HUANG Y. Performance analysis on compound parabolic concentrator and its applications[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2019. (in Chinese)
    吕家祺, 张宁, 尹鹏, 等. 太阳能光伏聚光器光学设计类型研究进展[J]. 激光与光电子学进展,2019,56(23):230002.

    LV J Q, ZHANG N, YIN P, et al. Research progress on optically designed solar photovoltaic concentrators[J]. Laser &Optoelectronics Progress, 2019, 56(23): 230002. (in Chinese)
    赵会富, 朱浩宇, 童宏伟, 等. 能量均匀分布的菲涅耳聚光系统的设计[J]. 激光杂志,2018,39(12):10-14. doi: 10.14016/j.cnki.jgzz.2018.12.010

    ZHAO H F, ZHU H Y, TONG H W, et al. Design of energy uniform distribution Fresnel concentration system[J]. Laser Journal, 2018, 39(12): 10-14. (in Chinese) doi: 10.14016/j.cnki.jgzz.2018.12.010
    杨淑利, 刘志全, 濮海玲. 空间聚光电池阵用拱形菲涅耳透镜的设计与分析[J]. 宇航学报,2014,35(1):106-114.

    YANG SH L, LIU ZH Q, PU H L. Design and analysis of arched Fresnel-lens for Spacial concentrating solar array[J]. Journal of Astronautics, 2014, 35(1): 106-114. (in Chinese)
    CHEN ZH ZH, XU Y T, GUO Y D, et al. 8.2 kW high beam quality quasi-continuous-wave face-pumped Nd: YAG slab amplifier[J]. Applied Optics, 2015, 54(16): 5011-5015. doi: 10.1364/AO.54.005011
    闫钰锋, 于洋, 白素平, 等. 板条激光器光束质量控制技术研究进展[J]. 中国光学,2019,12(4):767-782. doi: 10.3788/co.20191204.0767

    YAN Y F, YU Y, BAI S P, et al. Progress on beam quality control technology of slab lasers[J]. Chinese Optics, 2019, 12(4): 767-782. (in Chinese) doi: 10.3788/co.20191204.0767
    燕宇翔, 芦宇, 张祥祥. 大功率LED均匀线光源光学系统设计[J]. 照明工程学报,2020,31(1):77-82. doi: 10.3969/j.issn.1004-440X.2020.01.014

    YAN Y X, LU Y, ZHANG X X. Design of optical system for high power LED uniform line light source[J]. China Illuminating Engineering Journal, 2020, 31(1): 77-82. (in Chinese) doi: 10.3969/j.issn.1004-440X.2020.01.014
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article views(72) PDF downloads(86) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint