Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
DONG Quan-rui, ZHANG Zhen-dong, WANG Wei-guo, CHEN Tao, CHEN Fei. Control system design of 515-nm high power laser[J]. Chinese Optics, 2022, 15(5): 1013-1018. doi: 10.37188/CO.2022-0133
Citation: DONG Quan-rui, ZHANG Zhen-dong, WANG Wei-guo, CHEN Tao, CHEN Fei. Control system design of 515-nm high power laser[J]. Chinese Optics, 2022, 15(5): 1013-1018. doi: 10.37188/CO.2022-0133

Control system design of 515-nm high power laser

doi: 10.37188/CO.2022-0133
Funds:  Supported by National Key R&D Program of China (No. 2021YFB3601402)
More Information
  • Corresponding author: dongquanrui0431@126.com
  • Received Date: 18 Jul 2022
  • Rev Recd Date: 02 Aug 2022
  • Available Online: 12 Aug 2022
  • In order to realize the stable and safe output of lasers, a control system based on a 515-nm high-power laser is designed. Firstly, the pump drive module of the system is studied. The analog sampling of the module is completed by Field Programmable Gate Array (FPGA) and the calculation output is completed in Digital Signal Processing (DSP). The closed-loop control of the constant current source is completed by using the digital Proportion-Integral-Derivative (PID) algorithm. Secondly, a Thermo Electric Cooler (TEC) is used to achieve the stable temperature control of the frequency doubling crystal module, and the Negative Temperature Coefficient (NTC) is used as the feedback to realize the temperature control. Finally, the human-computer interaction system of the laser is designed, which realizes the real-time monitoring, judgment and storage of the internal state of the laser. In order to verify the effectiveness of the control system, a pump is selected for testing. The experimental results show that the pump drive module can work continuously and stably, and the control system can monitor the internal state of the laser in real time, which is safe and reliable. The laser output center wavelength after frequency doubling is 514.98 nm, the power can reach 170 W, and the optical power stability is ±0.07 dB. All devices and equipment for the control system are made in China, meeting the system design requirements of 515-nm high-power laser.

     

  • loading
  • [1]
    党文佳, 李哲, 卢娜, 等. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学,2021,14(2):264-274. doi: 10.37188/CO.2020-0193

    DANG W J, LI ZH, LU N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. (in Chinese) doi: 10.37188/CO.2020-0193
    [2]
    石俊凯, 王国名, 纪荣祎, 等. 结构紧凑的双波长连续波掺铒光纤激光器[J]. 中国光学,2019,12(4):810-819. doi: 10.3788/co.20191204.0810

    SHI J K, WANG G M, JI R Y, et al. Compact dual-wavelength continuous-wave Er-doped fiber laser[J]. Chinese Optics, 2019, 12(4): 810-819. (in Chinese) doi: 10.3788/co.20191204.0810
    [3]
    陈柄言, 于永吉, 吴春婷, 等. 窄线宽1 064 nm光纤激光泵浦高效率中红外3.8 μm MgO: PPLN光参量振荡器[J]. 中国光学,2021,14(2):361-367. doi: 10.37188/CO.2020-0169

    CHEN B Y, YU Y J, WU CH T, et al. High efficiency mid-infrared 3.8 μm MgO: PPLN optical parametric oscillator pumped by narrow linewidth 1 064 nm fiber laser[J]. Chinese Optics, 2021, 14(2): 361-367. (in Chinese) doi: 10.37188/CO.2020-0169
    [4]
    王烨, 张岩, 秦莉, 等. 高功率半导体激光器列阵封装引入应变的测量[J]. 光学 精密工程,2010,18(9):1951-1958.

    WANG Y, ZHANG Y, QIN L, et al. Measurement of packaging-induced strain in high power diode laser bar[J]. Optics and Precision Engineering, 2010, 18(9): 1951-1958. (in Chinese)
    [5]
    任乐燕. 非线性晶体温度控制系统的研究[D]. 武汉: 华中科技大学, 2008.

    REN L Y. Research of temperature control system for nonlinear crystal[D]. Wuhan: Huazhong University of Science and Technology, 2008. (in Chinese)
    [6]
    黄超, 马连英, 朱峰, 等. 陶瓷表面放电光泵浦源放电特性研究[J]. 中国光学,2019,12(6):1321-1328. doi: 10.3788/co.20191206.1321

    HUANG CH, MA L Y, ZHU F et al. Discharge characteristics of optical pumping source by ceramic surface discharge[J]. Chinese Optics, 2019, 12(6): 1321-1328. (in Chinese) doi: 10.3788/co.20191206.1321
    [7]
    ERICKSON C J, VAN ZIJLL M, DOERMANN G, et al. An ultrahigh stability, low-noise laser current driver with digital control[J]. Review of Scientific Instruments, 2008, 79(7): 072107.
    [8]
    田小建, 尚祖国, 高博, 等. 980 nm高稳定度激光泵浦源控制系统[J]. 光学 精密工程,2015,23(4):982-987. doi: 10.3788/OPE.20152304.0982

    TIAN X J, SHANG Z G, GAO B, et al. Control system for 980 nm high stability laser pump source[J]. Optics and Precision Engineering, 2015, 23(4): 982-987. (in Chinese) doi: 10.3788/OPE.20152304.0982
    [9]
    谭改娟, 谢冀江, 张来明, 等. 中波红外激光技术最新进展[J]. 中国光学,2013,6(4):501-512.

    TAN G J, XIE J J, ZHANG L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Optics, 2013, 6(4): 501-512. (in Chinese)
    [10]
    王镇锐, 张兴斌, 温世喆, 等. 结合TEC的泵驱两相温控系统的空间应用[J]. 宇航学报,2018,39(10):1176-1184. doi: 10.3873/j.issn.1000-1328.2018.10.014

    WANG ZH R, ZHANG X B, WEN SH ZH, et al. Space applications of pumped two-phase temperature control system combined with TEC[J]. Journal of Astronautics, 2018, 39(10): 1176-1184. (in Chinese) doi: 10.3873/j.issn.1000-1328.2018.10.014
    [11]
    张元飞, 樊绍巍, 刘宏, 等. 面向高温的NTC温度检测系统设计优化及标定[J]. 哈尔滨工业大学学报,2018,50(1):18-23. doi: 10.11918/j.issn.0367-6234.201612038

    ZHANG Y F, FAN SH W, LIU H, et al. Optimal design and calibration of NTC thermistor based temperature measurement system for high temperature application[J]. Journal of Harbin Institute of Technology, 2018, 50(1): 18-23. (in Chinese) doi: 10.11918/j.issn.0367-6234.201612038
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(1)

    Article views(171) PDF downloads(111) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return