Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
CHEN Xing, ZHOU Chang, LIU Ke-wei, SHEN De-zhen. Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide[J]. Chinese Optics, 2022, 15(5): 912-928. doi: 10.37188/CO.2022-0132
Citation: CHEN Xing, ZHOU Chang, LIU Ke-wei, SHEN De-zhen. Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide[J]. Chinese Optics, 2022, 15(5): 912-928. doi: 10.37188/CO.2022-0132

Review of ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide

doi: 10.37188/CO.2022-0132
Funds:  Supported by the National Natural Science Foundation of China (No. 62074148, No. 61875194, No. 11727902, No. 12074372); the Key Research and Development Program of Changchun City (No. 21ZY05); the 100 Talents Program of the Chinese Academy of Sciences; Youth Innovation Promotion Association, CAS (No. 2020225); Natural Science Foundation of Jilin Province (No. 20210101145JC); XuGuang Talents Plan of CIOMP
More Information
  • Ultraviolet photodetection technology is another dual-use detection technology after infrared detection and laser detection technology, which has broad application prospects. Vacuum photomultiplier tubes and Si-based photodiodes are common commercial UV detectors, but vacuum photomultiplier tubes are susceptible to high temperatures and electromagnetic radiation, and need to work under high pressure while Si-based photodiodes require expensive filters. Wide bandgap semiconductor ultraviolet photodetectors have overcome some of the problems faced by the above two devices, and are becoming the research hotspot. Among them, wide bandgap oxide materials have attracted extensive attention, due to the advantages of easy preparation for high response and high gain devices, and rich micro-structures and nano-structures. In this paper, ultraviolet photodetectors based on micro/nano-structured wide bandgap semiconductor oxide are combed, and some related researches in recent years are reviewed. The oxide materials involved include ZnO, Ga2O3, SnO2 and TiO2, etc. and the device structures involved include metal-semiconductor-metal devices, Schottky junction devices and heterojunction devices, etc.


  • loading
  • [1]
    任彬, 江兆潭, 郭晖, 等. 新型Ⅲ族氮化物日盲紫外变像管的研制及导弹逼近告警系统作用距离估算[J]. 兵工学报,2017,38(5):924-931. doi: 10.3969/j.issn.1000-1093.2017.05.012

    REN B, JIANG ZH T, GUO H, et al. Experiment of new protype group Ⅲ-nitride UV image converter tube and evaluation of detectable distance of missile approach warning system with it[J]. Acta Armamentarii, 2017, 38(5): 924-931. (in Chinese) doi: 10.3969/j.issn.1000-1093.2017.05.012
    GUO L, GUO Y N, YANG J K, et al. 275 nm deep ultraviolet AlGaN-based micro-LED arrays for ultraviolet communication[J]. IEEE Photonics Journal, 2022, 14(1): 8202905.
    PARK Y H, SOKOLIK I N, HALL S R. The impact of smoke on the ultraviolet and visible radiative forcing under different fire regimes[J]. Air,Soil and Water Research, 2018, 11: 1-10.
    FRĄCZ P. System for monitoring partial discharges occurring in overhead power transmission line insulators based on ultraviolet radiation registration[J]. Insight-Non-Destructive Testing and Condition Monitoring, 2016, 58(7): 360-366. doi: 10.1784/insi.2016.58.7.360
    BELZ M, DRESS P, KLEIN K F, et al. Liquid core waveguide with fiber optic coupling for remote pollution monitoring in the deep ultraviolet[J]. Water Science and Technology, 1998, 37(12): 279-284. doi: 10.2166/wst.1998.0552
    AI X Y, LI L P, ZHOU X, et al. A monitoring method for sulfate based on ultraviolet absorption spectroscopy dedicated to SO3 monitoring in coal-fired power plants[J]. Chemical Physics Letters, 2021, 780: 138935. doi: 10.1016/j.cplett.2021.138935
    CHEN Y R, ZHOU X Y, ZHANG ZH W, et al. Dual-band solar-blind UV photodetectors based on AlGaN/AlN superlattices[J]. Materials Letters, 2021, 291: 129583. doi: 10.1016/j.matlet.2021.129583
    KALININA E V, KUDOYAROV M F, NIKITINA I P, et al. Irradiation with argon ions of Cr/4H-SiC photodetectors[J]. Semiconductors, 2022, 56(3): 184-188. doi: 10.1134/S1063782622020087
    KUANG D, CHENG J, LI X Y, et al. Dual-ultraviolet wavelength photodetector based on facile method fabrication of ZnO/ZnMgO core/shell nanorod arrays[J]. Journal of Alloys and Compounds, 2021, 860: 157917. doi: 10.1016/j.jallcom.2020.157917
    WU C, WU F, MA C, et al. A general strategy to ultrasensitive Ga2O3 based self-powered solar-blind photodetectors[J]. Materials Today Physics, 2022, 23: 100643. doi: 10.1016/j.mtphys.2022.100643
    LIU K W, SAKURAI M, AONO M. ZnO-based ultraviolet photodetectors[J]. Sensors, 2010, 10(9): 8604-8634. doi: 10.3390/s100908604
    YANG Q, GUO X, WANG W H, et al. Enhancing sensitivity of a single ZnO micro- nanowire photodetector by piezo-phototronic effect[J]. ACS Nano, 2010, 4(10): 6285-6291. doi: 10.1021/nn1022878
    LEE H, JUNG H K, KIM Y E, et al. Facile synthesis of ZnO microrod photodetectors by solid-state reaction[J]. Journal of Alloys and Compounds, 2020, 825: 154110. doi: 10.1016/j.jallcom.2020.154110
    LEE H, MUN J H, OH I, et al. Enhanced photodetector performance in gold nanoparticle decorated ZnO microrods[J]. Materials Characterization, 2021, 171: 110813. doi: 10.1016/j.matchar.2020.110813
    SUN X Y, AZAD F, WANG SH P, et al. Low-cost flexible ZnO microwires array ultraviolet photodetector embedded in PAVL substrate[J]. Nanoscale Research Letters, 2018, 13(1): 277. doi: 10.1186/s11671-018-2701-4
    LI H H, LIU M L, ZHAO J J, et al. Controllable heterogeneous nucleation for patterning high-quality vertical and horizontal ZnO microstructures toward photodetectors[J]. Small, 2020, 16(42): 2004136. doi: 10.1002/smll.202004136
    KUMAR A G, LI X J, DU Y, et al. UV-photodetector based on heterostructured ZnO/(Ga, Ag)-co-doped ZnO nanorods by cost-effective two-step process[J]. Applied Surface Science, 2020, 509: 144770. doi: 10.1016/j.apsusc.2019.144770
    YOUNG S J, LIU Y H, SHIBLEE M D N I, et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures[J]. ACS Applied Electronic Materials, 2020, 2(11): 3522-3529. doi: 10.1021/acsaelm.0c00556
    CHU Y L, YOUNG S J, JI L W, et al. Fabrication of ultraviolet photodetectors based on fe-doped ZnO nanorod structures[J]. Sensors, 2020, 20(14): 3861. doi: 10.3390/s20143861
    MAHMOOD N, KHAN H, TRAN K, et al. Maximum piezoelectricity in a few unit-cell thick planar ZnO – A liquid metal-based synthesis approach[J]. Materials Today, 2021, 44: 69-77. doi: 10.1016/j.mattod.2020.11.016
    KRISHNAMURTHI V, AHMED T, MOHIUDDIN M, et al. A visible-blind photodetector and artificial optoelectronic synapse using liquid-metal exfoliated ZnO nanosheets[J]. Advanced Optical Materials, 2021, 9(16): 2100449. doi: 10.1002/adom.202100449
    MA H Y, LIU K W, CHENG ZH, et al. Speed enhancement of ultraviolet photodetector base on ZnO quantum dots by oxygen adsorption on surface defects[J]. Journal of Alloys and Compounds, 2021, 868: 159252. doi: 10.1016/j.jallcom.2021.159252
    ZHENG ZH Y, LIU K W, CHEN X, et al. High-performance flexible UV photodetector based on self-supporting ZnO nano-networks fabricated by substrate-free chemical vapor deposition[J]. Nanotechnology, 2021, 32(47): 475201. doi: 10.1088/1361-6528/ac1bda
    YANG F, ZHENG M L, ZHAO L, et al. The high-speed ultraviolet photodetector of ZnO nanowire Schottky barrier based on the triboelectric-nanogenerator-powered surface-ionic-gate[J]. Nano Energy, 2019, 60: 680-688. doi: 10.1016/j.nanoen.2019.04.015
    KUMARESAN Y, MIN G B, DAHIYA A S, et al. Kirigami and mogul-patterned ultra-stretchable high-performance ZnO nanowires-based photodetector[J]. Advanced Materials Technologies, 2022, 7(1): 2100804. doi: 10.1002/admt.202100804
    DUAN L, HE F N, TIAN Y, et al. Fabrication of self-powered fast-response ultraviolet photodetectors based on graphene/ZnO: Al nanorod-array-film structure with stable schottky barrier[J]. ACS Applied Materials &Interfaces, 2017, 9(9): 8161-8168.
    ZHU ZH F, WANG SH L, ZHU Y, et al. Fiber-shaped ZnO/graphene schottky photodetector with strain effect[J]. Advanced Materials Interfaces, 2018, 5(11): 1800136. doi: 10.1002/admi.201800136
    DHAR S, CHAKRABORTY P, MAJUMDER T, et al. CdS-decorated al-doped ZnO nanorod/polymer schottky junction ultraviolet–visible dual-wavelength photodetector[J]. ACS Applied Nano Materials, 2018, 1(7): 3339-3345. doi: 10.1021/acsanm.8b00551
    DHAR S, MAJUMDER T, CHAKRABORTY P, et al. DMSO modified PEDOT: PSS polymer/ZnO nanorods Schottky junction ultraviolet photodetector: photoresponse, external quantum efficiency, detectivity, and responsivity augmentation using N doped graphene quantum dots[J]. Organic Electronics, 2018, 53: 101-110. doi: 10.1016/j.orgel.2017.11.024
    DHAR S, MAJUMDER T, CHAKRABORTY P, et al. Enhancement of UV photodetector properties of ZnO nanorods/PEDOT: PSS Schottky junction by NGQD sensitization along with conductivity improvement of PEDOT: PSS by DMSO additive[J]. AIP Conference Proceedings, 2018, 1942(1): 080051.
    CHEN M X, ZHAO B, HU G F, et al. Piezo-phototronic effect modulated deep UV photodetector based on ZnO-Ga2O3 heterojuction microwire[J]. Advanced Functional Materials, 2018, 28(14): 1706379. doi: 10.1002/adfm.201706379
    ZHANG L F, WAN P, XU T, et al. Flexible ultraviolet photodetector based on single ZnO microwire/polyaniline heterojunctions[J]. Optics Express, 2021, 29(12): 19202-19213. doi: 10.1364/OE.430132
    COSTAS A, FLORICA C, PREDA N, et al. Radial heterojunction based on single ZnO-CuxO core-shell nanowire for photodetector applications[J]. Scientific Reports, 2019, 9(1): 5553. doi: 10.1038/s41598-019-42060-w
    BUTANOVS E, VLASSOV S, KUZMIN A, et al. Fast-response single-nanowire photodetector based on ZnO/WS2 core/shell heterostructures[J]. ACS Applied Materials &Interfaces, 2018, 10(16): 13869-13876.
    LEE D J, RYU S R, KUMAR G M, et al. Piezo-phototronic effect triggered flexible UV photodetectors based on ZnO nanosheets/GaN nanorods arrays[J]. Applied Surface Science, 2021, 558: 149896. doi: 10.1016/j.apsusc.2021.149896
    ZHOU H, YANG L, GUI P B, et al. Ga-doped ZnO nanorod scaffold for high-performance, hole-transport-layer-free, self-powered CH3NH3PbI3 perovskite photodetectors[J]. Solar Energy Materials and Solar Cells, 2019, 193: 246-252. doi: 10.1016/j.solmat.2019.01.020
    WANG H X, ZHANG P F, ZANG ZH G. High performance CsPbBr3 quantum dots photodetectors by using zinc oxide nanorods arrays as an electron-transport layer[J]. Applied Physics Letters, 2020, 116(16): 162103. doi: 10.1063/5.0005464
    YOU D T, XU CH X, ZHANG W, et al. Photovoltaic-pyroelectric effect coupled broadband photodetector in self-powered ZnO/ZnTe core/shell nanorod arrays[J]. Nano Energy, 2019, 62: 310-318. doi: 10.1016/j.nanoen.2019.05.050
    WANG H, MA J, CONG L, et al. Piezoelectric effect enhanced flexible UV photodetector based on Ga2O3/ZnO heterojunction[J]. Materials Today Physics, 2021, 20: 100464. doi: 10.1016/j.mtphys.2021.100464
    MONDAL A, YADAV M K, SHRINGI S, et al. Extremely low dark current and detection range extension of Ga2O3 UV photodetector using Sn alloyed nanostructures[J]. Nanotechnology, 2020, 31(29): 294002. doi: 10.1088/1361-6528/ab82d4
    LU Y C, ZHANG ZH F, YANG X, et al. High-performance solar-blind photodetector arrays constructed from Sn-doped Ga2O3 microwires via patterned electrodes[J]. Nano Research, 2022, 15(8): 7631-7638. doi: 10.1007/s12274-022-4341-3
    WENG W Y, HSUEH T J, CHANG S J, et al. Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector[J]. IEEE Transactions on Nanotechnology, 2011, 10(5): 1047-1052. doi: 10.1109/TNANO.2011.2104366
    ZHANG M M, KANG SH, WANG L, et al. Facile synthesis of β–Ga2O3 nanowires network for solar-blind ultraviolet photodetector[J]. Journal of Physics D:Applied Physics, 2021, 54(17): 175106. doi: 10.1088/1361-6463/abe15a
    ALHALAILI B, VIDU R, ISLAM M S. The growth of Ga2O3 nanowires on silicon for ultraviolet photodetector[J]. Sensors, 2019, 19(23): 5301. doi: 10.3390/s19235301
    ZHANG L Y, XIU X Q, LI Y W, et al. Solar-blind ultraviolet photodetector based on vertically aligned single-crystalline β-Ga2O3 nanowire arrays[J]. Nanophotonics, 2020, 9(15): 4497-4503. doi: 10.1515/nanoph-2020-0295
    WU Y T, FENG SH L, ZHANG M M, et al. Self-catalyst β-Ga2O3 semiconductor lateral nanowire networks synthesis on the insulating substrate for deep ultraviolet photodetectors[J]. RSC Advances, 2021, 11(45): 28326-28331. doi: 10.1039/D1RA04663B
    XIE CH, LU X T, MA M R, et al. Catalyst-free vapor-solid deposition growth of β-Ga2O3 nanowires for DUV photodetector and image sensor application[J]. Advanced Optical Materials, 2019, 7(24): 1901257. doi: 10.1002/adom.201901257
    WANG SH L, SUN H L, WANG ZH, et al. In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector[J]. Journal of Alloys and Compounds, 2019, 787: 133-139. doi: 10.1016/j.jallcom.2019.02.031
    WU C, HE C, GUO D, et al. Vertical α/β-Ga2O3 phase junction nanorods array with graphene-silver nanowire hybrid conductive electrode for high-performance self-powered solar-blind photodetectors[J]. Materials Today Physics, 2020, 12: 100193. doi: 10.1016/j.mtphys.2020.100193
    JUBU P R, YAM F K. Development and characterization of MSM UV photodetector based on gallium oxide nanostructures[J]. Sensors and Actuators A:Physical, 2020, 312: 112141. doi: 10.1016/j.sna.2020.112141
    ZHENG ZH Y, LIU K W, CHENG ZH, et al. Single β-Ga2O3 microbelt solar-blind photodetector with high specific detectivity, high rejection ratio and fast speed[J]. Journal of Physics D:Applied Physics, 2022, 55(36): 365107. doi: 10.1088/1361-6463/ac77c9
    WEI J Y, SHEN L P, ZHENG ZH CH, et al. The suppression of dark current for achieving high-performance Ga2O3 nanorod array ultraviolet photodetector[J]. Ceramics International, 2022, 48(9): 12112-12117. doi: 10.1016/j.ceramint.2022.01.071
    MITRA S, PAK Y, XIN B, et al. Solar-blind self-powered photodetector using solution-processed amorphous core-shell gallium oxide nanoparticles[J]. ACS Applied Materials &Interfaces, 2019, 11(42): 38921-38928.
    CHEN X, LIU K W, ZHANG ZH ZH, et al. Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film schottky junction[J]. ACS Applied Materials &Interfaces, 2016, 8(6): 4185-4191.
    FAN M M, XU K L, CAO L, et al. Fast-speed self-powered PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector with solar-blind UV/visible dual-band photodetection[J]. Chinese Physics B, 2022, 31(4): 048501. doi: 10.1088/1674-1056/ac3814
    FAN M M, XU K L, LI X Y, et al. Self-powered solar-blind UV/visible dual-band photodetection based on a solid-state PEDOT: PSS/α-Ga2O3 nanorod array/FTO photodetector[J]. Journal of Materials Chemistry C, 2021, 9(46): 16459-16467. doi: 10.1039/D1TC04091J
    SHIN G, KIM H Y, KIM J. Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction[J]. Korean Journal of Chemical Engineering, 2018, 35(2): 574-578. doi: 10.1007/s11814-017-0279-7
    CHEN Y CH, LU Y J, LIN CH N, et al. Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging[J]. Journal of Materials Chemistry C, 2018, 6(21): 5727-5732. doi: 10.1039/C8TC01122B
    HE T, ZHANG X D, DING X Y, et al. Broadband ultraviolet photodetector based on vertical Ga2O3/GaN nanowire array with high responsivity[J]. Advanced Optical Materials, 2019, 7(7): 1801563. doi: 10.1002/adom.201801563
    FAN M M, CAO L, XU K L, et al. Mixed-phase β-Ga2O3 and SnO2 metal-semiconductor-metal photodetectors with extended detection range from 293 nm to 330 nm[J]. Journal of Alloys and Compounds, 2021, 853: 157080. doi: 10.1016/j.jallcom.2020.157080
    HE CH R, GUO D Y, CHEN K, et al. α-Ga2O3 nanorod array–Cu2O microsphere p–n junctions for self-powered spectrum-distinguishable photodetectors[J]. ACS Applied Nano Materials, 2019, 2(7): 4095-4103. doi: 10.1021/acsanm.9b00527
    YANG Y, LIU W M, HUANG T T, et al. Low deposition temperature amorphous ALD-Ga2O3 thin films and decoration with MoS2 multilayers toward flexible solar-blind photodetectors[J]. ACS Applied Materials &Interfaces, 2021, 13(35): 41802-41809.
    GONG H H, WANG ZH P, YU X X, et al. Field-plated NiO/Ga2O3 p-n heterojunction power diodes with high-temperature thermal stability and near unity ideality factors[J]. IEEE Journal of the Electron Devices Society, 2021, 9: 1166-1171. doi: 10.1109/JEDS.2021.3130305
    LI SH, GUO D Y, LI P G, et al. Ultrasensitive, superhigh signal-to-noise ratio, self-powered solar-blind photodetector based on n-Ga2O3/p-CuSCN core-shell microwire heterojunction[J]. ACS Applied Materials &Interfaces, 2019, 11(38): 35105-35114.
    LI SH, ZHI Y S, LU CH, et al. Broadband ultraviolet self-powered photodetector constructed on exfoliated β-Ga2O3/CuI core-shell microwire heterojunction with superior reliability[J]. Journal of Physical Chemistry Letters, 2021, 12(1): 447-453. doi: 10.1021/acs.jpclett.0c03382
    BAE H, CHARNAS A, SUN X, et al. Solar-blind UV photodetector based on atomic layer-deposited Cu2O and nanomembrane β-Ga2O3 pn oxide heterojunction[J]. ACS Omega, 2019, 4(24): 20756-20761. doi: 10.1021/acsomega.9b03149
    CHEN K, WANG SH L, HE CH R, et al. Photoelectrochemical self-powered solar-blind photodetectors based on Ga2O3 nanorod array/electrolyte solid/liquid heterojunctions with a large separation interface of photogenerated carriers[J]. ACS Applied Nano Materials, 2019, 2(10): 6169-6177. doi: 10.1021/acsanm.9b00992
    LIU SH, JIAO SH J, ZHANG J H, et al. High-detectivity and sensitive UVA photodetector of polycrystalline CH3NH3PbCl3 improved by α-Ga2O3 nanorod array[J]. Applied Surface Science, 2022, 571: 151291. doi: 10.1016/j.apsusc.2021.151291
    ZHANG Y, XU W X, XU X J, et al. Self-powered dual-color UV-green photodetectors based on SnO2 millimeter wire and microwires/CsPbBr3 particle heterojunctions[J]. The Journal of Physical Chemistry Letters, 2019, 10(4): 836-841. doi: 10.1021/acs.jpclett.9b00154
    JIANG J, HECK F, HOFMANN D M, et al. Synthesis of SnO2 nanowires using SnI2 as precursor and their application as high-performance self-powered ultraviolet photodetectors[J]. Physica Status Solidi (b), 2018, 255(3): 1700426. doi: 10.1002/pssb.201700426
    MARIMUTHU G, SARAVANAKUMAR K, JEYADHEEPAN K, et al. Influence of twin boundaries on the photocurrent decay of nanobranch and dense-forest structured SnO2 UV photodetectors[J]. Superlattices and Microstructures, 2019, 128: 181-198. doi: 10.1016/j.spmi.2019.01.032
    LI Y H, HUANG W X, LIU H, et al. UV photodetector based on polycrystalline SnO2 nanotubes by electrospinning with enhanced performance[J]. Journal of Nanoparticle Research, 2018, 20(12): 334. doi: 10.1007/s11051-018-4440-y
    CHETRI P, DHAR J C. Au/GLAD-SnO2 nanowire array-based fast response Schottky UV detector[J]. Applied Physics A, 2019, 125(5): 286. doi: 10.1007/s00339-019-2590-0
    CHETRI P, DHAR J C. Improved photodetector performance of SnO2 nanowire by optimized air annealing[J]. Semiconductor Science and Technology, 2020, 35(4): 045014. doi: 10.1088/1361-6641/ab7434
    OZEL K, YILDIZ A. A self‐powered ultraviolet photodetector with ultrahigh photoresponsivity (208 mA·W−1) based on SnO2 nanostructures/Si heterojunctions[J]. Physica Status Solidi (RRL), 2021, 15(6): 2100085. doi: 10.1002/pssr.202100085
    LOU ZH, YANG X L, CHEN H R, et al. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays[J]. Journal of Semiconductors, 2018, 39(2): 024002. doi: 10.1088/1674-4926/39/2/024002
    LONG ZH H, XU X J, YANG W, et al. Cross-bar SnO2-NiO nanofiber-array-based transparent photodetectors with high detectivity[J]. Advanced Electronic Materials, 2020, 6(1): 1901048. doi: 10.1002/aelm.201901048
    HAN J K, SONG D S, LIM Y R, et al. Nonlinear photoelectric properties by strained MoS2 and SnO2 core-shell nanotubes for flexible visible light photodetectors[J]. Advanced Materials Technologies, 2021, 6(5): 2001105. doi: 10.1002/admt.202001105
    LI L D, LOU ZH, CHEN H R, et al. Stretchable SnO2-CdS interlaced-nanowire film ultraviolet photodetectors[J]. Science China Materials, 2019, 62(8): 1139-1150. doi: 10.1007/s40843-019-9416-7
    CAI J, XU X J, SU L X, et al. Self-powered n-SnO2/p-CuZnS core-shell microwire UV photodetector with optimized performance[J]. Advanced Optical Materials, 2018, 6(15): 1800213. doi: 10.1002/adom.201800213
    GHOSH C, DWIVEDI S M M D, GHOSH A, et al. A novel Ag nanoparticles/TiO2 nanowires-based photodetector and glucose concentration detection[J]. Applied Physics A, 2019, 125(12): 810. doi: 10.1007/s00339-019-3108-5
    JOSHNA P, HAZRA A, CHAPPANDA K N, et al. Fast response of UV photodetector based on Ag nanoparticles embedded uniform TiO2 nanotubes array[J]. Semiconductor Science and Technology, 2020, 35(1): 015001. doi: 10.1088/1361-6641/ab52f1
    ZHANG M, TUOKEDAERHAN K, ZHANG H Y, et al. Ultraviolet photodetector based on Au doped TiO2 nanowires array with low dark current[J]. Optoelectronics Letters, 2019, 15(2): 81-84. doi: 10.1007/s11801-019-8106-5
    GULLER O, PEKSU E, KARAAGAC H. Synthesis of TiO2 nanorods for schottky-type UV-photodetectors and third-generation solar cells[J]. Physica Status Solidi (a), 2018, 215(4): 1700404. doi: 10.1002/pssa.201700404
    DONG Y N, ZHENG W J, YAN X M, et al. SnO2 nanorods arrays functionalized TiO2 nanoparticles based UV photodetector with high and fast response[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(14): 13099-13107. doi: 10.1007/s10854-019-01673-7
    HSU C L, WU H Y, FANG C C, et al. Solution-processed UV and visible photodetectors based on Y-doped ZnO nanowires with TiO2 nanosheets and Au nanoparticles[J]. ACS Applied Energy Materials, 2018, 1(5): 2087-2095. doi: 10.1021/acsaem.8b00180
    JUBU P R, CHAHROUR K M, YAM F K, et al. Titanium oxide nanotube film decorated with β-Ga2O3 nanoparticles for enhanced water splitting properties[J]. Solar Energy, 2022, 235: 152-162. doi: 10.1016/j.solener.2022.02.033
    CAO R, XU J P, SHI SH B, et al. High-performance self-powered ultraviolet photodetectors based on mixed-dimensional heterostructure arrays formed from NiO nanosheets and TiO2 nanorods[J]. Journal of Materials Chemistry C, 2020, 8(28): 9646-9654. doi: 10.1039/D0TC01956A
    NI SH M, GUO F Y, WANG D B, et al. Effect of MgO surface modification on the TiO2 nanowires electrode for self-powered UV photodetectors[J]. ACS Sustainable Chemistry &Engineering, 2018, 6(6): 7265-7272.
    BASHIRI R, IRFAN M S, MOHAMED N M, et al. Hierarchically SrTiO3@TiO2@Fe2O3 nanorod heterostructures for enhanced photoelectrochemical water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(48): 24607-24619. doi: 10.1016/j.ijhydene.2020.02.106
    LING C C, GUO T CH, ZHAO L, et al. TiO2@TiO2-xHx core-shell nanoparticle film/Si heterojunction for ultrahigh detectivity and sensitivity broadband photodetector[J]. Nanotechnology, 2019, 30(41): 415203. doi: 10.1088/1361-6528/ab2e32
    HO Y R, CHANG Y H, LIN C H, et al. Al2O3-passivated TiO2 nanorods for solid–liquid heterojunction ultraviolet photodetectors[J]. Journal of Materials Science, 2021, 56(10): 6052-6063. doi: 10.1007/s10853-020-05669-1
    MAURYA M R, TOUTAM V, BATHULA S, et al. Wide spectral photoresponse of template assisted out of plane grown ZnO/NiO composite nanowire photodetector[J]. Nanotechnology, 2020, 31(2): 025705. doi: 10.1088/1361-6528/ab474e
    YU N S, LI H O, WU Y F. A high-sensitivity, fast-response, rapid-recovery UV photodetector based on p-GaN/NiO nanostructures/n-GaN sandwich structure[J]. Solid State Sciences, 2020, 104: 106206. doi: 10.1016/j.solidstatesciences.2020.106206
    YU N S, LI H O, QI Y. NiO nanosheet/GaN heterojunction self-powered ultraviolet photodetector grown by a solution method[J]. Optical Materials Express, 2019, 9(1): 26-34. doi: 10.1364/OME.9.000026
    REDDY K C S, SAHATIYA P, SANTOS-SAUCEDA I, et al. One-step fabrication of 1D p-NiO nanowire/n-Si heterojunction: development of self-powered ultraviolet photodetector[J]. Applied Surface Science, 2020, 513: 145804. doi: 10.1016/j.apsusc.2020.145804
    JAYALAKSHMI G, SARAVANAN K, NAVAS J, et al. Fabrication of p-NiO nanoflakes/n-Si(100) heterojunction architecture for high sensitive photodetectors[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(7): 6811-6819. doi: 10.1007/s10854-019-00993-y
    SABZEHPARVAR M, KIANI F, TABRIZI N S. Mesoporous-assembled TiO2-NiO-Ag nanocomposites with p-n/Schottky heterojunctions for enhanced photocatalytic performance[J]. Journal of Alloys and Compounds, 2021, 876: 160133. doi: 10.1016/j.jallcom.2021.160133
    ZHANG Y F, JI T, ZHU J Q, et al. A high performance self-powered heterojunction photodetector based on NiO nanosheets on an n-Si (1 0 0) modified substrate[J]. Materials Letters, 2021, 285: 128995. doi: 10.1016/j.matlet.2020.128995
    YE T, YU L M, LI S L, et al. High-performance wide-spectrum photoresponse photodetector based on 3D porous In2O3 microcubes[J]. Materials Letters, 2022, 314: 131917. doi: 10.1016/j.matlet.2022.131917
    RAN W H, LOU ZH, SHEN G ZH. Ultra-high-sensitivity photodetector from ultraviolet to visible based on Ga-doped In2O3 nanowire phototransistor with top-gate structure[C]. Proceedings of the 5th IEEE Electron Devices Technology & Manufacturing Conference (EDTM), IEEE, 2021.
    TIEN L C, YANG F M, HUANG S C, et al. Single Zn2GeO4 nanowire high-performance broadband photodetector[J]. Journal of Applied Physics, 2018, 124(17): 174503. doi: 10.1063/1.5054915
    CHEN SH, LOU ZH, CHEN D, et al. Printable Zn2GeO4 microwires based flexible photodetectors with tunable photoresponses[J]. Advanced Materials Technologies, 2018, 3(5): 1800050. doi: 10.1002/admt.201800050
    HU J N, LIU K, MA T, et al. Zn2GeO4 nanowires synthesized by dual laser-hydrothermal method for deep-ultraviolet photodetectors[J]. Optics &Laser Technology, 2021, 140: 106946.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(1514) PDF downloads(403) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint