Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
LI Zong-xuan, ZHANG Chang-hao, ZHANG De-fu, MA Bin, LI Yun-feng. Flexural mounting technology of a 1.8 m space-borne rectangular mirror[J]. Chinese Optics, 2022, 15(5): 1079-1091. doi: 10.37188/CO.2022-0131
Citation: LI Zong-xuan, ZHANG Chang-hao, ZHANG De-fu, MA Bin, LI Yun-feng. Flexural mounting technology of a 1.8 m space-borne rectangular mirror[J]. Chinese Optics, 2022, 15(5): 1079-1091. doi: 10.37188/CO.2022-0131

Flexural mounting technology of a 1.8 m space-borne rectangular mirror

doi: 10.37188/CO.2022-0131
Funds:  Supported by Science and Technology Development Program of Jilin Province (No. 20200201294JC)
More Information
  • Corresponding author: lizongxuan@ciomp.ac.cn
  • Received Date: 13 Jun 2022
  • Rev Recd Date: 26 Jul 2022
  • Available Online: 15 Sep 2022
  • The rectangular primary mirror with aperture of 1.8 m×0.5 m is the crucial component of an off-axis Three Mirror Anastigmat (TMA) space optical system. In order to guaranty the structural stability and reliability of the Primary Mirror Assembly (PMA) and the surface figure error (RMS value) of the mirror, a bi-axial flexural support has been proposed for the large-size rectangular mirror. First, based on the principle of kinematic equivalent, the initial structure of the bi-axial flexural support was designed and the analytical formula for stiffness and its characteristic was studied as well. Then the mounting position and the key dimensions of the flexural supports were studied and optimized. Finally, the final optimization design scheme of the PMA was determined. Experimental results indicate that the surface figure error (RMS value) of the PMA under 1 G gravity in X and Y directions are 4.81 nm and 6.09 nm respectively when the optical axis is placed horizontally, which are less than λ/50 (λ=632.8 nm). The first-order natural frequency is 104 Hz, which can satisfy the design requirements. The dynamic tests have shown that the dynamic characteristics of the mirror assembly are good, and the flexural support system is stable and reliable. Now the mirror has been polished to have a surface figure better than λ/30 RMS. Zero Gravity optical testing has been performed under ±1 G respectively, which shows good coincidence with the analytical results.

     

  • loading
  • [1]
    JI H R, ZHU ZH B, TAN H, et al. Design of a high-throughput telescope based on scanning an off-axis three-mirror anastigmat system[J]. Applied Optics, 2021, 60(10): 2817-2823. doi: 10.1364/AO.421998
    [2]
    李叶文, 李宗轩, 刘瑞婧, 等. 空间光学遥感器长条形反射镜集成优化设计[J]. 科学技术与工程,2019,19(35):375-381. doi: 10.3969/j.issn.1671-1815.2019.35.057

    LI Y W, LI Z X, LIU R J, et al. Integrated optimization design of rectangular mirror for space optical remote sensor[J]. Science Technology and Engineering, 2019, 19(35): 375-381. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.35.057
    [3]
    李宗轩, 陈雪, 张雷, 等. 大口径空间反射镜Cartwheel型柔性支撑设计[J]. 光学学报,2014,34(6):0622003. doi: 10.3788/AOS201434.0622003

    LI Z X, CHEN X, ZHANG L, et al. Design of Cartwheel flexural support for a large aperture space mirror[J]. Acta Optica Sinica, 2014, 34(6): 0622003. (in Chinese) doi: 10.3788/AOS201434.0622003
    [4]
    曲慧东, 魏加立, 董得义, 等. 长条形空间反射镜组件轻量化结构设计[J]. 红外与激光工程,2021,50(6):20200404. doi: 10.3788/IRLA20200404

    QU H D, WEI J L, DONG D Y, et al. Lightweight structural design of rectangular space mirror assembly[J]. Infrared and Laser Engineering, 2021, 50(6): 20200404. (in Chinese) doi: 10.3788/IRLA20200404
    [5]
    KIHM H, YANG H S. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering, 2013, 52(9): 091806. doi: 10.1117/1.OE.52.9.091806
    [6]
    朱俊青, 沙巍, 陈长征, 等. 空间长条形反射镜背部三支撑点的设置[J]. 光学 精密工程,2015,23(9):2562-2569. doi: 10.3788/OPE.20152309.2562

    ZHU J Q, SHA W, CHEN CH ZH, et al. Position layout of rear three point mounting for space rectangular mirror[J]. Optics and Precision Engineering, 2015, 23(9): 2562-2569. (in Chinese) doi: 10.3788/OPE.20152309.2562
    [7]
    HUO T L, YU J J, ZHAO H ZH. Design of a kinematic flexure mount for precision instruments based on stiffness characteristics of flexural pivot[J]. Mechanism and Machine Theory, 2020, 150: 103868. doi: 10.1016/j.mechmachtheory.2020.103868
    [8]
    王朋朋, 辛宏伟, 朱俊青, 等. 长条反射镜及柔节的参数优化设计[J]. 红外与激光工程,2021,50(8):20200493. doi: 10.3788/IRLA20200493

    WANG P P, XIN H W, ZHU J Q, et al. Parametric optimization design of rectangular reflective mirror and flexible component[J]. Infrared and Laser Engineering, 2021, 50(8): 20200493. (in Chinese) doi: 10.3788/IRLA20200493
    [9]
    刘福贺, 程志峰, 石磊, 等. 长条形反射镜支撑结构设计与分析[J]. 红外与激光工程,2015,44(5):1512-1517. doi: 10.3969/j.issn.1007-2276.2015.05.021

    LIU F H, CHENG ZH F, SHI L, et al. Design and analysis of supporting structure for rectangular mirror[J]. Infrared and Laser Engineering, 2015, 44(5): 1512-1517. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.05.021
    [10]
    杨秋实, 张继友, 于建海, 等. 大口径空间反射镜支撑变形误差分析方法研究[J]. 航天返回与遥感,2020,41(3):60-70. doi: 10.3969/j.issn.1009-8518.2020.03.007

    YANG Q SH, ZHANG J Y, YU J H, et al. Research on error analysis of support deformation for large aperture space mirrors[J]. Spacecraft Recovery &Remote Sensing, 2020, 41(3): 60-70. (in Chinese) doi: 10.3969/j.issn.1009-8518.2020.03.007
    [11]
    刘小涵, 李双成, 李美萱, 等. 离轴三反光学系统主三反射镜支撑结构设计[J]. 红外与激光工程,2021,50(8):20210025. doi: 10.3788/IRLA20210025

    LIU X H, LI SH CH, LI M X, et al. Supporting structure design for primary and tertiary mirror of off-axis TMA system[J]. Infrared and Laser Engineering, 2021, 50(8): 20210025. (in Chinese) doi: 10.3788/IRLA20210025
    [12]
    KRUIS J R C G. Design, analysis, testing and applications of two-body and three-body kinematic mounts[D]. Lausanne: École Polytechnique Fédérale de Lausanne, 2016.
    [13]
    HOWELL L L, MAGLEBY S P, OLSEN B M. 柔顺机构设计理论与实例[M]. 陈贵敏, 于靖军, 马洪波, 等译. 北京: 高等教育出版社, 2015.

    HOWELL L L, MAGLEBY S P, OLSEN B M. Handbook of Compliant Mechanisms[M]. CHEN G M, YU J J, MA H B, et al. , trans. Beijing: Higher Education Press, 2015. (in Chinese)
    [14]
    LI Z X, CHEN X, WANG SH J, et al. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope[J]. Review of Scientific Instruments, 2017, 88(12): 125107. doi: 10.1063/1.4986042
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(27)  / Tables(3)

    Article views(123) PDF downloads(102) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return