Volume 15 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
ZHANG Lu, LI Bo, LI Han-shuang, GU Guo-chao, WANG Xiao-xu, SHAO Ying-qiu, LIN Guan-yu, YE Xin. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. Chinese Optics, 2022, 15(5): 1029-1037. doi: 10.37188/CO.2022-0125
Citation: ZHANG Lu, LI Bo, LI Han-shuang, GU Guo-chao, WANG Xiao-xu, SHAO Ying-qiu, LIN Guan-yu, YE Xin. Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer[J]. Chinese Optics, 2022, 15(5): 1029-1037. doi: 10.37188/CO.2022-0125

Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer

doi: 10.37188/CO.2022-0125
Funds:  Supported by Special project of black land protection and utilization science and technology innovation project (No. XDA28050102); National Natural Science Foundation of China (No. 62005268); National Key R&D Program of China undergrant (No. 2018YFB0504600, No. 2018YFB0504603); Stable-Support Scientific Project of China Research Institute of Radiowave Propagation (No. A132001W03)
More Information
  • Corresponding author: libo0008429@163.com
  • Received Date: 14 Jun 2022
  • Rev Recd Date: 07 Jul 2022
  • Available Online: 03 Aug 2022
  • Based on the requirement of multichannel detection for hyperspectral resolution imaging spectrometer, we design a hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer whose telescopic system adopts an off-axis three mirror structure with an off-axis field of view, and whose spectroscopic system applies a modified small and light weight Offner structure. Through the theoretical analysis of Offner spectrometer structures, initial structural parameters of a dual channel common optical path Offner that met the requirements of hyperspectral resolution were achieved. In order to improve the imaging quality of the imaging spectrometer, meniscus lenses were introduced into Offner structure, and the system was gradually optimized. Eventually, a dual channel common optical path imaging spectrometer was obtained with operating bands of 280~300 nm and 370~400 nm. When the Nyquist frequency is 27.8 lp/mm, the modulation transfer function (MTF) of both channels is better than 0.8, the full field mean square root radius (RMS) is less than 9 μm. and the spectral resolution is better than 0.1 nm. The design of this imaging spectrometer has important implications for the miniaturization and integration design of space-based hyperspectral detection imaging spectrometers.

     

  • loading
  • [1]
    REININGER F M, DAMI M, PAOLINETTI R, et al. Visible infrared mapping spectrometer-visible channel (VIMS-V)[J]. Proceedings of SPIE, 1994, 2198: 239-250. doi: 10.1117/12.176753
    [2]
    WELLMAN J B, DUVAL J, JUERGENS D, et al. Visible and infrared mapping spectrometer (VIMS): a facility instrument for planetary missions[J]. Proceedings of SPIE, 1987, 0834: 213-221. doi: 10.1117/12.942301
    [3]
    KÖHLER J, JANSEN R, IRIZAR J, et al. Sentinel 5 instrument and UV1 spectrometer subsystem optical design and development[J]. Proceedings of SPIE, 2021, 11852: 118522M.
    [4]
    BONI A, TAITI A, BINI A, et al. Sentinel-5 short-wave infrared spectrometer optical design[J]. Proceedings of SPIE, 2018, 10690: 106901J.
    [5]
    LOVE S P, OTT L A, POST K W, et al. NACHOS, a CubeSat-based high-resolution UV-Visible hyperspectral imager for remote sensing of trace gases: system overview and science objectives[J]. Proceedings of SPIE, 2021, 11832: 118320E.
    [6]
    孙允珠, 蒋光伟, 李云端, 等. 高分五号卫星方案设计与技术特点[J]. 上海航天,2019,36(S2):1-13. doi: 10.19328/j.cnki.1006-1630.2019.S.001

    SUN Y ZH, JIANG G W, LI Y D, et al. GF-5 satellite system design and technological characteristics[J]. Aerospace Shanghai, 2019, 36(S2): 1-13. (in Chinese) doi: 10.19328/j.cnki.1006-1630.2019.S.001
    [7]
    刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报,2020,24(4):333-344.

    LIU Y N, SUN D X, HU X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing, 2020, 24(4): 333-344. (in Chinese)
    [8]
    毕研盟, 王倩, 杨忠东, 等. 碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的在轨波长定标[J]. 大气科学,2022,46(3):645-652.

    BI Y M, WANG Q, YANG ZH D, et al. TanSat ACGS on-orbit wavelength calibration using the solar Fraunhofer lines[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(3): 645-652. (in Chinese)
    [9]
    王龙, 蔺超, 纪振华, 等. 碳卫星CO2探测仪发射前的漫反射板定标[J]. 光学 精密工程,2018,26(8):1967-1976. doi: 10.3788/OPE.20182608.1967

    WANG L, LIN CH, JI ZH H, et al. Preflight diffuser’s calibration of carbon dioxide spectrometer of Tan Sat[J]. Optics and Precision Engineering, 2018, 26(8): 1967-1976. (in Chinese) doi: 10.3788/OPE.20182608.1967
    [10]
    范纪泽, 李博, 张璐, 等. 应用于作物荧光检测的改进型Offner光谱仪设计[J]. 中国光学,2021,14(6):1459-1467. doi: 10.37188/CO.2021-0073

    FAN J Z, LI B, ZHANG L, et al. Design of an improved Offner spectrometer for crop fluorescence detection[J]. Chinese Optics, 2021, 14(6): 1459-1467. (in Chinese) doi: 10.37188/CO.2021-0073
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)  / Tables(2)

    Article views(622) PDF downloads(234) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return