Turn off MathJax
Article Contents
WANG Zi-chuan, ZHANG Wei, GUO Fei, JIA Zhi-qiang, WANG Li-qiang, DONG Wen-fei, YANG Qing. Trans-scale optical endoscopy imaging technology[J]. Chinese Optics. doi: 10.37188/CO.2022-0078
Citation: WANG Zi-chuan, ZHANG Wei, GUO Fei, JIA Zhi-qiang, WANG Li-qiang, DONG Wen-fei, YANG Qing. Trans-scale optical endoscopy imaging technology[J]. Chinese Optics. doi: 10.37188/CO.2022-0078

Trans-scale optical endoscopy imaging technology

doi: 10.37188/CO.2022-0078
Funds:  Supported by the National Key Research and Development Program of China (No. 2021YFC2400103); the Zhejiang Provincial Natural Science Foundation of China (No. LGF20F050006); Key Research Project of Zhejiang Lab (No. 2019MC0AD02, No. 2022MG0AL01)
More Information
  • Corresponding author: wangliqiang@zju.edu.cn
  • Received Date: 24 Apr 2022
  • Rev Recd Date: 19 May 2022
  • Available Online: 02 Jul 2022
  • Due to the advantages of high resolution, multi-scale, multi-dimension, low radiation and easy to integrate, optical imaging technology plays an important role in biomedical field. In the field of endoscopy, how to obtain, process and visualize the endoscopic image information is the core of the problem what optical imaging technology need to solve. The obtaining of trans-scale endoscopic image of patients in the medical clinical is more advantageous to the surgeon for the diagnosis of patients and can improve in accuracy of the operation. The review starts with the application of trans-scale optical imaging technology in the field of endoscopy, focusing on the different optical systems to obtain trans-scale images in clinical endoscopy, including trans-scale optical zoom system, multi-channel imaging system, fiber-scanning imaging system, and expounds its progress and future trends.

     

  • loading
  • [1]
    付玲, 骆清铭. 生物医学光学成像的进展与展望[J]. 中国科学:生命科学,2020,50(11):1222-1236. doi: 10.1360/SSV-2020-0263

    FU L, LUO Q M. Progress and prospect of biomedical optical imaging[J]. Scientia Sinica Vitae, 2020, 50(11): 1222-1236. (in Chinese) doi: 10.1360/SSV-2020-0263
    [2]
    ZAHRAN S A E S, SAEED R A H, ELAZIZY I M. Remote sensing based water resources and agriculture spatial indicators system[J]. The Egyptian Journal of Remote Sensing and Space Science, 2022, 25(2): 515-527. doi: 10.1016/j.ejrs.2022.02.002
    [3]
    YANG L, CHEN M, ZHU Q, et al. Development of a small-diameter and high-resolution industrial endoscope with CMOS image sensor[J]. Sensors and Actuators A:Physical, 2019, 296: 17-23. doi: 10.1016/j.sna.2019.04.026
    [4]
    PRENGÈRE L, KULCSÁR C, RAYNAUD H F. Zonal-based high-performance control in adaptive optics systems with application to astronomy and satellite tracking[J]. Journal of the Optical Society of America A, 2020, 37(7): 1083-1099. doi: 10.1364/JOSAA.391484
    [5]
    刘飞, 吴晓琴, 段景博, 等. 浅谈计算成像在光电探测中的应用(特邀)[J]. 光子学报,2021,50(10):1011001. doi: 10.3788/gzxb20215010.1011001

    LIU F, WU X Q, DUAN J B, et al. An Introduction of application of computational imaging in photoelectric detection (invited)[J]. Acta Photonica Sinica, 2021, 50(10): 1011001. (in Chinese) doi: 10.3788/gzxb20215010.1011001
    [6]
    COSSAIRT O, NAYAR S. Spectral focal sweep: extended depth of field from chromatic aberrations[C]. Proceedings of 2010 IEEE International Conference on Computational Photography (ICCP), IEEE, 2010: 1-8.
    [7]
    WANG X H, LI D Y, ZHANG G. Panoramic stereo imaging of a bionic compound-eye based on binocular vision[J]. Sensors, 2021, 21(6): 1944. doi: 10.3390/s21061944
    [8]
    WANG Y Y, SHI CH Y, XU H R, et al. A compact bionic compound eye camera for imaging in a large field of view[J]. Optics &Laser Technology, 2021, 135: 106705.
    [9]
    裴红星, 刘金达, 葛佳隆, 等. 图像拼接技术综述[J]. 郑州大学学报(理学版),2019,51(4):1-10,29.

    PEI H X, LIU J D, GE J L, et al. A review on image mosaicing techniques[J]. Journal of Zhengzhou University (Natural Science Edition), 2019, 51(4): 1-10,29. (in Chinese)
    [10]
    LIU Y Y, LI Q W, LI Y, et al. High-resolution multi-wavelength lensless diffraction imaging with adaptive dispersion correction[J]. Optics Express, 2021, 29(5): 7197-7209. doi: 10.1364/OE.419128
    [11]
    YIN W X, HE K J, XU D, et al. Significant target analysis and detail preserving based infrared and visible image fusion[J]. Infrared Physics &Technology, 2022, 121: 104041.
    [12]
    LEE M H, LEE T K. Application of fusion-fluorescence imaging using indocyanine green in endoscopic endonasal surgery[J]. Journal of Clinical Neuroscience, 2022, 98: 45-52. doi: 10.1016/j.jocn.2022.01.023
    [13]
    VANI V, PRASHANTH K V M. Image enhancement of wireless capsule endoscopy frames using image fusion technique[J]. IETE Journal of Research, 2021, 67(4): 463-475. doi: 10.1080/03772063.2018.1554459
    [14]
    XU M, LIU Y T, YUAN Y, et al. Variable-focus liquid lens based on electrically responsive fluid[J]. Optics Letters, 2022, 47(3): 509-512. doi: 10.1364/OL.447182
    [15]
    WANG Y ZH, LI P CH, GUPTA U, et al. . Tunable soft lens of large focal length change[J/OL]. Soft Robotics, 2021(2021-08-12).https://doi.org/10.1089/soro.2021.0036.
    [16]
    PUSENKOVA A, SOVA O, GALSTIAN T. Electrically variable liquid crystal lens with spiral electrode[J]. Optics Communications, 2022, 508: 127783. doi: 10.1016/j.optcom.2021.127783
    [17]
    张伟, 牛春阳, 游兴海, 等. 高倍率大视场细胞内镜成像系统研究[J]. 光学学报,2021,41(17):1717001. doi: 10.3788/AOS202141.1717001

    ZHANG W, NIU CH Y, YOU X H, et al. Endocytoscopic imaging system with high magnification and large field of view[J]. Acta Optica Sinica, 2021, 41(17): 1717001. (in Chinese) doi: 10.3788/AOS202141.1717001
    [18]
    KUMAGAI Y, KAWADA K, YAMAZAKI S, et al. Current status and limitations of the newly developed endocytoscope GIF-Y0002 with reference to its diagnostic performance for common esophageal lesions[J]. Journal of Digestive Diseases, 2012, 13(8): 393-400. doi: 10.1111/j.1751-2980.2012.00612.x
    [19]
    KUMAGAI Y, TAKUBO K, KAWADA K, et al. A newly developed continuous zoom-focus endocytoscope[J]. Endoscopy, 2016, 49(2): 176-180. doi: 10.1055/s-0042-119267
    [20]
    马场智之. 内窥镜用物镜及内窥镜: 日本, 113721355A[P]. 2021-11-30.

    TOMAYUKI B. Objective lens for an endoscope and endoscope: JI, 113721355A[P]. 2021-11-30. (in Chinese)
    [21]
    那须幸子. 内窥镜用变倍光学系统及内窥镜: 中国, 111630429A[P]. 2020-09-04.

    SACHIKO N. Variable power optical system for endoscope and endoscope: CN, 111630429A[P]. 2020-09-04. (in Chinese)
    [22]
    ZOU Y CH, CHAU F S, ZHOU G Y. Ultra-compact optical zoom endoscope using solid tunable lenses[J]. Optics Express, 2017, 25(17): 20675-20688. doi: 10.1364/OE.25.020675
    [23]
    郭鑫, 张薇, 速晋辉, 等. 可调焦胶囊内窥镜光学系统设计[J]. 光子学报,2015,44(5):0522004. doi: 10.3788/gzxb20154405.0522004

    GUO X, ZHANG W, SU J H, et al. Design of a focus-tunable capsule endoscope system[J]. Acta Photonica Sinica, 2015, 44(5): 0522004. (in Chinese) doi: 10.3788/gzxb20154405.0522004
    [24]
    邵晓鹏, 刘飞, 李伟, 等. 计算成像技术及应用最新进展[J]. 激光与光电子学进展,2020,57(2):020001.

    SHAO X P, LIU F, LI W, et al. Latest progress in computational imaging technology and application[J]. Laser &Optoelectronics Progress, 2020, 57(2): 020001. (in Chinese)
    [25]
    WU J M, LU ZH, JIANG D, et al. Iterative tomography with digital adaptive optics permits hour-long intravital observation of 3D subcellular dynamics at millisecond scale[J]. Cell, 2021, 184(12): 3318-3332.e17. doi: 10.1016/j.cell.2021.04.029
    [26]
    SCHARF E, DREMEL J, KUSCHMIERZ R, et al. Video-rate lensless endoscope with self-calibration using wavefront shaping[J]. Optics Letters, 2020, 45(13): 3629-3632. doi: 10.1364/OL.394873
    [27]
    WANG J W, ZHAO Y. Lensless multispectral camera based on a coded aperture array[J]. Sensors, 2021, 21(22): 7757. doi: 10.3390/s21227757
    [28]
    MIRIROSTAMI S, KATKOVNIK V Y, EGUIAZARIAN K O. Extended DoF and achromatic inverse imaging for lens and lensless MPM camera based on wiener filtering of defocused OTFs[J]. Optical Engineering, 2021, 60(5): 051204.
    [29]
    BERGEN T, WITTENBERG T. Stitching and surface reconstruction from endoscopic image sequences: a review of applications and methods[J]. IEEE Journal of Biomedical and Health Informatics, 2016, 20(1): 304-321. doi: 10.1109/JBHI.2014.2384134
    [30]
    王霞, 赵家碧, 孙晶, 等. 偏振图像融合技术综述[J]. 航天返回与遥感,2021,42(6):9-21. doi: 10.3969/j.issn.1009-8518.2021.06.002

    WANG X, ZAO J B, SUN J, et al. Review of polarization image fusion technology[J]. Spacecraft Recovery &Remote Sensing, 2021, 42(6): 9-21. (in Chinese) doi: 10.3969/j.issn.1009-8518.2021.06.002
    [31]
    AZAM M A, KHAN K B, SALAHUDDIN S, et al. A review on multimodal medical image fusion: compendious analysis of medical modalities, multimodal databases, fusion techniques and quality metrics[J]. Computers in Biology and Medicine, 2022, 144: 105253. doi: 10.1016/j.compbiomed.2022.105253
    [32]
    张丽霞, 曾广平, 宣兆成. 多源图像融合方法的研究综述[J]. 计算机工程与科学,2022,44(2):321-334. doi: 10.3969/j.issn.1007-130X.2022.02.018

    ZHANG L X, ZENG G P, XUAN ZH CH. A survey of fusion methods for multi-source image[J]. Computer Engineering and Science, 2022, 44(2): 321-334. (in Chinese) doi: 10.3969/j.issn.1007-130X.2022.02.018
    [33]
    TANG Y B, KORTUM A, PARRA S G, et al. In vivo imaging of cervical precancer using a low-cost and easy-to-use confocal microendoscope[J]. Biomedical Optics Express, 2020, 11(1): 269-280. doi: 10.1364/BOE.381064
    [34]
    CORDOVA R, KIEKENS K, BURRELL S, et al. Sub-millimeter endoscope demonstrates feasibility of in vivo reflectance imaging, fluorescence imaging, and cell collection in the fallopian tubes[J]. Journal of Biomedical Optics, 2021, 26(7): 076001.
    [35]
    SI P, HONKALA A, DE LA ZERDA A, et al. Optical microscopy and coherence tomography of cancer in living subjects[J]. Trends in Cancer, 2020, 6(3): 205-222. doi: 10.1016/j.trecan.2020.01.008
    [36]
    LI H M, LI Y, MENG Y L, et al. . Research on the resonance frequency reduction of the single fiber scanner[C]. Proceedings of the 2019 18th International Conference on Optical Communications and Networks (ICOCN), IEEE, 2019: 1-3.
    [37]
    WU T, ZHANG L, WANG J M, et al. Miniaturized precalibration-based Lissajous scanning fiber probe for high speed endoscopic optical coherence tomography[J]. Optics Letters, 2020, 45(8): 2470-2473. doi: 10.1364/OL.389364
    [38]
    PIYAWATTANAMETHA W, COCKER E D, BURNS L D, et al. In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror[J]. Optics Letters, 2009, 34(15): 2309-2311. doi: 10.1364/OL.34.002309
    [39]
    SEO Y H, PARK H C, JEONG K H. Electrothermal MEMS fiber scanner with lissajous patterns for endomicroscopic applications[C]. Proceedings of the 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2016: 367-370.
    [40]
    GIATAGANAS P, HUGHES M, PAYNE C J, et al. Intraoperative robotic-assisted large-area high-speed microscopic imaging and intervention[J]. IEEE Transactions on Biomedical Engineering, 2019, 66(1): 208-216. doi: 10.1109/TBME.2018.2837058
    [41]
    刘磊, 吴威, 张冰, 等. 高分辨率光栅精密定位系统研究[J]. 红外,2020,41(5):35-39.

    LIU L, WU W, ZHANG B, et al. Research on high resolution grating precision positioning system[J]. Infrared, 2020, 41(5): 35-39. (in Chinese)
    [42]
    KAUR M, LANE P M, MENON C. Endoscopic optical imaging technologies and devices for medical purposes: state of the art[J]. Applied Sciences, 2020, 10(19): 6865-6865. doi: 10.3390/app10196865
    [43]
    吴彤, 霍文麒, 黄蕴智, 等. 用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头[J]. 物理学报,2021,70(15):150701. doi: 10.7498/aps.70.20210151

    WU T, HUO W L, HUANG Y ZH, et al. A miniaturized pre-calibration based Lissajous scanning fiber probe for endoscopic optical coherence tomography[J]. Acta Physica Sinica, 2021, 70(15): 150701. (in Chinese) doi: 10.7498/aps.70.20210151
    [44]
    KAUR M, LANE P M, MENON C. Scanning and actuation techniques for cantilever-based fiber optic endoscopic scanners——a review[J]. Sensors, 2021, 21(1): 251. doi: 10.3390/s21010251
    [45]
    TSAI T H, LEE H C, AHSEN O O, et al. Ultrahigh speed endoscopic optical coherence tomography for gastroenterology[J]. Biomedical Optics Express, 2014, 5(12): 4387-4404. doi: 10.1364/BOE.5.004387
    [46]
    ZHANG J, NGUYEN T, POTSAID B, et al. Multi-MHz MEMS-VCSEL swept-source optical coherence tomography for endoscopic structural and angiographic imaging with miniaturized brushless motor probes[J]. Biomedical Optics Express, 2021, 12(4): 2384-2403. doi: 10.1364/BOE.420394
    [47]
    LÓPEZ-MARÍN A, SPRINGELING G, BEURSKENS R, et al. Motorized capsule for shadow-free OCT imaging and synchronous beam control[J]. Optics Letters, 2019, 44(15): 3641-3644. doi: 10.1364/OL.44.003641
    [48]
    TANISAKA Y, RYOZAWA S, NONAKA K, et al. Diagnosis of biliary strictures using probe-based confocal laser endomicroscopy under the direct view of peroral cholangioscopy: results of a prospective study (with video)[J]. Gastroenterology Research and Practice, 2020, 2020: 6342439.
    [49]
    BAHLMANN J, MADRAHIMOV N, DANIEL F, et al. Establishment of a guided, in vivo, multi-channel, abdominal, tissue imaging approach[J]. Scientific Reports, 2020, 10(1): 9224. doi: 10.1038/s41598-020-65950-w
    [50]
    VASILEV I V, MAMENKO I S, MAKAROVA A V, et al. Probe-based confocal laser endomicroscopy in COVID-19[J]. Advances in Respiratory Medicine, 2021, 89(4): 456-459. doi: 10.5603/ARM.a2021.0067
    [51]
    张朋涛, 杨西斌, 周伟, 等. 双模切换显微内窥镜成像系统设计及应用[J]. 光学 精密工程,2019,27(6):1335-1344. doi: 10.3788/OPE.20192706.1335

    ZHANG P T, YANG X B, ZHOU W, et al. Design and applied research of dual-mode switching endomicroscopic imaging system[J]. Optics and Precision Engineering, 2019, 27(6): 1335-1344. (in Chinese) doi: 10.3788/OPE.20192706.1335
    [52]
    FRIDMAN M, SHEMESH D, ABOOKASIS D. Dual-camera endoscopic imaging probe combining simultaneous illumination of white-light and laser sources for near real-time monitoring of tissue features[J]. Optics and Lasers in Engineering, 2022, 154: 107018. doi: 10.1016/j.optlaseng.2022.107018
    [53]
    LI W J, FAN J F, LI SH W, et al. Homography-based robust pose compensation and fusion imaging for augmented reality based endoscopic navigation system[J]. Computers in Biology and Medicine, 2021, 138: 104864. doi: 10.1016/j.compbiomed.2021.104864
    [54]
    ABDALBARI A, HUANG X SH, REN J. Endoscopy-MR image fusion for image guided procedures[J]. International Journal of Biomedical Imaging, 2013, 2013: 472971.
    [55]
    WARTAK A, KELADA A K, ALARCON P A L, et al. Dual-modality optical coherence tomography and fluorescence tethered capsule endomicroscopy[J]. Biomedical Optics Express, 2021, 12(7): 4308-4323. doi: 10.1364/BOE.422453
    [56]
    GIATAGANAS P, HUGHES M, YANG G ZH. Force adaptive robotically assisted endomicroscopy for intraoperative tumour identification[J]. International Journal of Computer Assisted Radiology and Surgery, 2015, 10(6): 825-832.
    [57]
    ZHANG L, YE M L, GIATAGANAS P, et al. From macro to micro: autonomous multiscale image fusion for robotic surgery[J]. IEEE Robotics & Automation Magazine, 2017, 24(2): 63-72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)

    Article views(225) PDF downloads(193) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return