Volume 16 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
HUO Jia-yi, LI Mian-hao, WANG Zi-chuan, YUAN Bo, YANG Qing, WANG Li-qiang. Panoramic endoscopic imaging technology and it’s applications[J]. Chinese Optics, 2023, 16(1): 44-60. doi: 10.37188/CO.2022-0074
Citation: HUO Jia-yi, LI Mian-hao, WANG Zi-chuan, YUAN Bo, YANG Qing, WANG Li-qiang. Panoramic endoscopic imaging technology and it’s applications[J]. Chinese Optics, 2023, 16(1): 44-60. doi: 10.37188/CO.2022-0074

Panoramic endoscopic imaging technology and it’s applications

doi: 10.37188/CO.2022-0074
Funds:  Supported by the National Key Research and Development Program of China (No. 2021YFC2400103); the Zhejiang Provincial Natural Science Foundation of China (No. LGF20F050006); Key Research Project of Zhejiang Lab (No. 2019MC0AD02, No. 2022MG0AL01)
More Information
  • Corresponding author: wangliqiang@zju.edu.cn
  • Received Date: 20 Apr 2022
  • Rev Recd Date: 07 May 2022
  • Available Online: 06 Jul 2022
  • Panoramic endoscopic imaging technology can effectively reduce the observation blind area of internal organs. It has many advantages, such as shortening the operation time, reducing the risk of intraoperative bleeding, improving the prognosis and shortening the postoperative recovery time. It has important application value in minimally invasive surgery and preoperative examination. It is a research hotspot in recent years. This paper combs the panoramic endoscopic imaging technology from two aspects: principle and product applications. Firstly, various panoramic endoscopic imaging technologies based on two-dimensional and three-dimensional imaging are reviewed, their implementation methods are described, and their key indexes and performances are analyzed. Secondly, the capsule endoscope, panoramic enteroscope and other different types of products derived from panoramic endoscopic imaging technology are compared and analyzed, and the development trend and application prospect of panoramic endoscopic imaging technology are prospected.


  • loading
  • [1]
    熊兴波, 樊淑梅, 江镇州, 等. 胶囊内镜在胃肠道疾病中的诊断价值研究[J]. 中国实用医药,2021,16(19):85-87. doi: 10.14163/j.cnki.11-5547/r.2021.19.030

    XIONG X B, FAN SH M, JIANG ZH ZH, et al. Research on the diagnostic value of capsule endoscopy in gastrointestinal diseases[J]. China Practical Medicine, 2021, 16(19): 85-87. (in Chinese) doi: 10.14163/j.cnki.11-5547/r.2021.19.030
    国擎. 腹腔镜辅助与开腹直肠癌根治术治疗直肠癌的近期效果对比[J]. 中国实用医药,2022,17(3):30-32. doi: 10.14163/j.cnki.11-5547/r.2022.03.010

    GUO Q. Comparison of the recent effect of laparoscopic-assisted resection and open radical resection of rectal cancer in the treatment of rectal cancer[J]. China Practical Medicine, 2022, 17(3): 30-32. (in Chinese) doi: 10.14163/j.cnki.11-5547/r.2022.03.010
    高志强. 内镜联合腹腔镜在胃肠道病变手术治疗中的临床应用[J]. 影像研究与医学应用,2022,6(1):188-190. doi: 10.3969/j.issn.2096-3807.2022.01.064

    GAO ZH Q. Clinical application of endoscopy combined with laparoscopy in the surgical treatment of gastrointestinal lesions[J]. Journal of Imaging Research and Medical Applications, 2022, 6(1): 188-190. (in Chinese) doi: 10.3969/j.issn.2096-3807.2022.01.064
    VAN KEULEN K E, SOONS E, SIERSEMA P D. The role of behind folds visualizing techniques and technologies in improving adenoma detection rate[J]. Current Treatment Options in Gastroenterology, 2019, 17(3): 394-407. doi: 10.1007/s11938-019-00242-5
    FRIEDRICH K, GEHRKE S, STREMMEL W, et al. First clinical trial of a newly developed capsule endoscope with panoramic side view for small bowel: a pilot study[J]. Journal of Gastroenterology and Hepatology, 2013, 28(9): 1496-1501. doi: 10.1111/jgh.12280
    ZAMMIT S C, MCALINDON M E, SIDHU R. PTU-084 the use of panoramic capsule endoscopy in obscure gastrointestinal bleeding[J]. Gut, 2019, 68(S2): A233.
    ZWINGER L L, SIEGMUND B, STROUX A, et al. CapsoCam SV-1 versus PillCam SB 3 in the detection of obscure gastrointestinal bleeding: results of a prospective randomized comparative multicenter study[J]. Journal of Clinical Gastroenterology, 2019, 53(3): e101-e106. doi: 10.1097/MCG.0000000000000994
    BRANCHI F, FERRETTI F, ORLANDO S, et al. Small-bowel capsule endoscopy in patients with celiac disease, axial versus lateral/panoramic view: Results from a prospective randomized trial[J]. Digestive Endoscopy, 2020, 32(5): 778-784. doi: 10.1111/den.13575
    NAYA Y, NAKAMURA K, ARAKI K, et al. Usefulness of panoramic views for novice surgeons doing retroperitoneal laparoscopic nephrectomy[J]. International Journal of Urology, 2009, 16(2): 177-180. doi: 10.1111/j.1442-2042.2008.02215.x
    ELOSUA A, RULLAN M, RUBIO S, et al. Does capsule endoscopy impact clinical management in established Crohn's disease?[J]. Digestive and Liver Disease, 2022, 54(1): 118-124. doi: 10.1016/j.dld.2021.08.014
    POPOVIC V, SEYID K, COGAL Ö, et al. . State-of-the-art multi-camera systems[M]//POPOVIC V, SEYID K, COGAL Ö, et al. . Design and Implementation of Real-Time Multi-Sensor Vision Systems. Cham: Springer, 2017: 13-31.
    ZENG J L, CHENG Y H, WU T Y, et al. . MicroEYE: a wireless multiple-lenses panoramic endoscopic system[C]. International Conference on Advanced Engineering Theory and Applications, Springer, 2017: 190-200.
    LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]. 9th European Conference on Computer Vision, Springer, 2006: 430-443.
    BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up robust features[C]. 9th European Conference on Computer Vision, Springer, 2006: 404-417.
    RUBLEE E, RABAUD V, KONOLIGE K, et al. . ORB: An efficient alternative to SIFT or SURF[C]. International Conference on Computer Vision, Barcelona, 2011: 2564-2571.
    MUJA M, LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]. Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, INSTICC Press, 2009.
    FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. doi: 10.1145/358669.358692
    PENG C H, CHENG C H. A panoramic endoscope design and implementation for Minimally Invasive Surgery[C]. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2014: 453-456.
    CHENG C H, PENG C H, GUO J I, et al. A two-lens minimally invasive surgical panoramic endoscope design and implementation[J]. International Journal of Electrical Engineering, 2014, 21(6): 235-241.
    CHENG C H, HUNG SH P, GUO J I, et al. . A wireless panoramic endoscope system design and implementation for minimally invasive surgery[C]. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2015: 1895-1895.
    KIM D T, CHENG C H. A panoramic stitching vision performance improvement technique for Minimally Invasive Surgery[C]. 2016 5th International Symposium on Next-Generation Electronics (ISNE), IEEE, 2016: 1-2.
    KIM D T, NGUYEN V T, CHENG C H, et al. Speed improvement in image stitching for panoramic dynamic images during minimally invasive surgery[J]. Journal of Healthcare Engineering, 2018, 2018: 3654210.
    KIM D T, CHENG C H, LIU D G, et al. Designing a new endoscope for panoramic-view with focus-area 3D-vision in minimally invasive surgery[J]. Journal of Medical and Biological Engineering, 2020, 40(2): 204-219. doi: 10.1007/s40846-019-00503-9
    KIM D T, CHENG C H, LIU D G, et al. Performance improvement for two-lens panoramic endoscopic system during minimally invasive surgery[J]. Journal of Healthcare Engineering, 2019, 2019: 2097284.
    KIM J J, WATRAS A, LIU H W, et al. Large-field-of-view visualization utilizing multiple miniaturized cameras for laparoscopic surgery[J]. Micromachines, 2018, 9(9): 431. doi: 10.3390/mi9090431
    ZHANG Z Y, WANG L X, ZHENG W F, et al. Endoscope image mosaic based on pyramid ORB[J]. Biomedical Signal Processing and Control, 2022, 71: 103261. doi: 10.1016/j.bspc.2021.103261
    JANG J, YOO H J. A capsule endoscope system for wide visualization field and location tracking[C]. 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), IEEE, 2018: 1-4.
    SHEU M J, CHIANG C W, SUN W S, et al. Dual view capsule endoscopic lens design[J]. Optics Express, 2015, 23(7): 8565-8575. doi: 10.1364/OE.23.008565
    JANG J, LEE J, LEE K R, et al. . 4-Camera VGA-resolution capsule endoscope with 80 MB/s body-channel communication transceiver and Sub-cm range capsule localization[C]. 2018 IEEE International Solid - State Circuits Conference - (ISSCC), IEEE, 2018: 282-284.
    TAMADAZTE B, AGUSTINOS A, CINQUIN P, et al. Multi-view vision system for laparoscopy surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 2015, 10(2): 195-203. doi: 10.1007/s11548-014-1064-2
    LIN CH H, HSIAO L J, HSAIO J T, et al. Front view and panoramic side view videoscope lens system design[J]. Applied Optics, 2014, 53(29): H146-H152. doi: 10.1364/AO.53.00H146
    KATKAM R, BANERJEE B, HUANG C Y, et al. Compact dual-view endoscope without field obscuration[J]. Journal of Biomedical Optics, 2015, 20(7): 076007. doi: 10.1117/1.JBO.20.7.076007
    LIU Q, BAI J, LUO Y J. Design of high resolution panoramic endoscope imaging system based on freeform surface[J]. Journal of Physics:Conference Series, 2016, 680: 012011. doi: 10.1088/1742-6596/680/1/012011
    SAHLI S, WANG R C C, MURTHY A, et al. A 360 degree side view endoscope for lower GI tract mapping[J]. Physics in Canada, 2015, 71: 18-20.
    DALLAIRE X, THIBAULT S. Design of a foveated wide-angle endoscopic lens[J]. Optical Engineering, 2016, 55(4): 047106. doi: 10.1117/1.OE.55.4.047106
    TSENG S M, HUANG C W, HSU Y T, et al. . Panoramic annular lens design of endoscope[C]. 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), IEEE, 2017: 101-102.
    TSENG S M, YU J C, HSU Y T, et al. Panoramic endoscope based on convex parabolic mirrors[J]. Optical Engineering, 2018, 57(3): 033102.
    TSENG Y C, HAN P, HSU H C, et al. A flexible FOV capsule endoscope design based on compound lens[J]. Journal of Display Technology, 2016, 12(12): 1798-1804.
    COGAL O, LEBLEBICI Y. An insect eye inspired miniaturized multi-camera system for endoscopic imaging[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(1): 212-224. doi: 10.1109/TBCAS.2016.2547388
    CHEN L, YUAN Q, YE J F, et al. Design of a compact dual-view endoscope based on a hybrid lens with annularly stitched aspheres[J]. Optics Communications, 2019, 453: 124346. doi: 10.1016/j.optcom.2019.124346
    PENNE J, HÖLLER K, STÜRMER M, et al. . Time-of-flight 3-D endoscopy[C]. 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2009: 467-474.
    KÖHLER T, HAASE S, BAUER S, et al. . ToF meets RGB: novel multi-sensor super-resolution for hybrid 3-D endoscopy[C]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2013: 139-146.
    STOLYAROV R, BUHARIN V, VAL M, et al. Sub-millimeter precision 3D measurement through a standard endoscope with time of flight[J]. Proceedings of SPIE, 2022, 11949: 119490E.
    ISHII I, YAMAMOTO K,DOI K, et al.. High-speed 3D image acquisition using coded structured light projection[C]. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007: 925-930.
    朱高杰. 基于相位结构光的三维测量内窥镜系统研究[D]. 杭州: 浙江大学, 2018.

    ZHU G J. Research on three-dimensional measurement endoscope system based on phase-shifting structure light[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    HUANG P S, ZHANG S. Fast three-step phase-shifting algorithm[J]. Applied Optics, 2006, 45(21): 5086-5091. doi: 10.1364/AO.45.005086
    VALKENBURG R J, MCIVOR A M. Accurate 3D measurement using a structured light system[J]. Image and Vision Computing, 1998, 16(2): 99-110. doi: 10.1016/S0262-8856(97)00053-X
    POSDAMER J L, ALTSCHULER M D. Surface measurement by space-encoded projected beam systems[J]. Computer Graphics and Image Processing, 1982, 18(1): 1-17. doi: 10.1016/0146-664X(82)90096-X
    HEIKE C L, UPSON K, STUHAUG E, et al. 3D digital stereophotogrammetry: a practical guide to facial image acquisition[J]. Head &Face Medicine, 2010, 6(1): 18.
    MAURICE X, ALBITAR C, DOIGNON C, et al. . A structured light-based laparoscope with real-time organs' surface reconstruction for minimally invasive surgery[C]. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2012: 5769-5772.
    GRIFFIN P M, NARASIMHAN L S, YEE S R. Generation of uniquely encoded light patterns for range data acquisition[J]. Pattern Recognition, 1992, 25(6): 609-616. doi: 10.1016/0031-3203(92)90078-W
    DESJARDINS D, PAYEUR P. Dense stereo range sensing with marching pseudo-random patterns[C]. Fourth Canadian Conference on Computer and Robot Vision (CRV'07), IEEE, 2007: 216-226.
    GORTHI S S, RASTOGI P. Fringe projection techniques: whither we are?[J]. Optics and Lasers in Engineering, 2010, 48: 133-140. doi: 10.1016/j.optlaseng.2009.09.001
    CLANCY N T, STOYANOV D, MAIER-HEIN L, et al. Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging[J]. Biomedical Optics Express, 2011, 2(11): 3119-3128. doi: 10.1364/BOE.2.003119
    STOYANOV D, YANG G ZH. Soft tissue deformation tracking for robotic assisted minimally invasive surgery[C]. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2009: 254-257.
    HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 30(2): 328-341.
    KHAMIS S, FANELLO S, RHEMANN C, et al. . Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction[C]. 15th Proceedings of the European Conference on Computer Vision (ECCV), Springer, 2018: 573-590.
    YU H, ZHOU CH J, ZHANG W, et al. A three-dimensional measurement method for binocular endoscopes based on deep learning[J]. Frontiers of Information Technology &Electronic Engineering, 2022, 23(4): 653-660.
    ZHOU CH J, YU H, YUAN B, et al. Three-dimensional stitching of binocular endoscopic images based on feature points[J]. Photonics, 2021, 8(8): 330. doi: 10.3390/photonics8080330
    MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    MUR-ARTAL R, TARDÓS J D. ORB-SLAM: tracking and mapping recognizable features[C]. Workshop on Multi View Geometry in Robotics (MVIGRO), 2014: 2.
    MUR-ARTAL R, TARDÓS J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. doi: 10.1109/TRO.2017.2705103
    CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. doi: 10.1109/TRO.2021.3075644
    WHELAN T, LEUTENEGGER S, SALAS-MORENO R, et al. . ElasticFusion: Dense SLAM without a pose graph[C]. Robotics: Science and Systems XI, 2015.
    DOCEA R, PFEIFFER M, BODENSTEDT S, et al. Simultaneous localisation and mapping for laparoscopic liver navigation: a comparative evaluation study[J]. Proceedings of SPIE, 2021, 11598: 115980B.
    CHEN L, TANG W, JOHN N W, et al. SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality[J]. Computer Methods and Programs in Biomedicine, 2018, 158: 135-146. doi: 10.1016/j.cmpb.2018.02.006
    NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: Dense tracking and mapping in real-time[C]. 2011 International Conference on Computer Vision, IEEE, 2011: 2320-2327.
    ENGEL J, STURM J, CREMERS D. Semi-dense visual odometry for a monocular camera[C]. Proceedings of the IEEE International Conference on Computer Vision, IEEE, 2013: 1449-1456.
    CHEN R J, BOBROW T L, ATHEY T, et al. . Slam endoscopy enhanced by adversarial depth prediction[Z]. arXiv preprint arXiv: 1907.00283, 2019.
    WIDYA A R, MONNO Y, OKUTOMI M, et al. Whole stomach 3D reconstruction and frame localization from monocular endoscope video[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7: 1-10.
    TONTINI G E, CAVALLARO F, NEUMANN H, et al. . Extensive small-bowel Crohn’s disease detected by the newly introduced 360° panoramic viewing capsule endoscopy system[J]. Endoscopy, 2014, 46(S 01): E353-E354.
    VOGELSTEIN B, FEARON E R, HAMILTON S R, et al. Genetic alterations during colorectal-tumor development[J]. New England Journal of Medicine, 1988, 319(9): 525-532. doi: 10.1056/NEJM198809013190901
    LEGGETT B, WHITEHALL V. Role of the serrated pathway in colorectal cancer pathogenesis[J]. Gastroenterology, 2010, 138(6): 2088-2100. doi: 10.1053/j.gastro.2009.12.066
    GRALNEK I M, CARR-LOCKE D L, SEGOL O, et al. Comparison of standard forward-viewing mode versus ultrawide-viewing mode of a novel colonoscopy platform: a prospective, multicenter study in the detection of simulated polyps in an in vitro colon model (with video)[J]. Gastrointestinal Endoscopy, 2013, 77(3): 472-479. doi: 10.1016/j.gie.2012.12.011
    RUBIN M, BOSE K P, KIM S H. Mo1517 successful deployment and use of third eye panoramic™ a novel side viewing video CAP fitted on a standard colonoscope[J]. Gastrointestinal Endoscopy, 2014, 79(S5): AB466.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(19)  / Tables(3)

    Article views(1239) PDF downloads(701) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint