Turn off MathJax
Article Contents
LIU Qiang, ZHAO Jin, SUN Yudan, LIU Wei, WANG Jianxin, LIU Chao, LV Jingwei, WANG Shimiao, JIANG Yu, CHU Paul K. A Novel Methane and Hydrogen sensor with Surface Plasmon Resonance-Based Photonic Quasi-crystal Fiber[J]. Chinese Optics. doi: 10.37188/CO.2022-0025
Citation: LIU Qiang, ZHAO Jin, SUN Yudan, LIU Wei, WANG Jianxin, LIU Chao, LV Jingwei, WANG Shimiao, JIANG Yu, CHU Paul K. A Novel Methane and Hydrogen sensor with Surface Plasmon Resonance-Based Photonic Quasi-crystal Fiber[J]. Chinese Optics. doi: 10.37188/CO.2022-0025

A Novel Methane and Hydrogen sensor with Surface Plasmon Resonance-Based Photonic Quasi-crystal Fiber

doi: 10.37188/CO.2022-0025
Funds:  Supported by the Hainan Province Science and Technology Special Fund (No. ZDYF2022GXJS003); Youth Science Foundation of Northeast Petroleum University (No. 2019QNL-17); Postdoctoral Scientific Research Development Fund of Heilongjiang Province (No. LBH-Q20081);Local Universities Reformation and Development Personnel Training Supporting Project from Central Authorities (No. 140119001), City University of Hong Kong Strategic Research Grant (SRG) (No. 7005505)
More Information
  • Author Bio:

    LIU Qiang (1980—), Male, born in Tailai, Heilongjiang, Ph.D, Professor, graduated from Harbin Engineering University in 2012, and is mainly engaged in optical fiber sensing technology. E-mail: nepulq@126.com

    Liu Chao (1978—), Male, born in Mulan, Heilongjiang, Ph.D, Professor, doctoral supervisor, graduated from Harbin Institute of Technology in 2008, and is mainly engaged in micro-structured optical devices. E-mail: msm-liu@126.com

  • Corresponding author: msm-liu@126.com
  • Available Online: 13 Jan 2023
  • A novel photonic quasi-crystal fiber (PQF) sensor based on surface plasmon resonance (SPR) is designed for simultaneous detection of methane and hydrogen. In the sensor, Pd-WO3 and cryptophane E doped polysiloxane films deposited on silver films are the hydrogen and methane sensing materials, respectively. The PQF-SPR sensor is analyzed numerically by the full-vector finite element method and excellent sensing performance is demonstrated. The maximum and average hydrogen sensitivities are 0.8 nm/% and 0.65 nm/% in the concentration range of 0% to 3.5% and the maximum and average methane sensitivities are 10 nm/% and 8.81 nm/% in the range between 0% and 3.5%. The sensor provides the capability of detecting multiple gases and has large potential in device miniaturization and remote monitoring.

     

  • loading
  • [1]
    HAO Q Q, LUO ZH M, WANG T, et al. The flammability limits and explosion behaviours of hydrogen-enriched methane-air mixtures[J]. Experimental Thermal and Fluid Science, 2021, 126: 110395. doi: 10.1016/j.expthermflusci.2021.110395
    [2]
    SUMIDA S, OKAZAKI S, ASAKURA S, et al. Distributed hydrogen determination with fiber-optic sensor[J]. Sensors and Actuators B:Chemical, 2005, 108(1-2): 508-514. doi: 10.1016/j.snb.2004.11.068
    [3]
    YANG J CH, XU L J, CHEN W M. An optical fiber methane gas sensing film sensor based on core diameter mismatch[J]. Chinese Optics Letters, 2010, 8(5): 482-484. doi: 10.3788/COL20100805.0482
    [4]
    WANG Y, YANG M H, ZHANG G L, et al. Fiber optic hydrogen sensor based on fabry-perot interferometer coated with sol-gel Pt/WO3 coating[J]. Journal of Lightwave Technology, 2015, 33(12): 2530-2534. doi: 10.1109/JLT.2014.2365183
    [5]
    ZHOU B, CHEN ZH, ZHANG Y B, et al. Active fiber gas sensor for methane detecting based on a laser heated fiber bragg grating[J]. IEEE Photonics Technology Letters, 2014, 26(11): 1069-1072. doi: 10.1109/LPT.2014.2314692
    [6]
    PUSTELNY T, MACIAK E, OPILSKI Z, et al. Optical interferometric structures for application in gas sensors[J]. Optica Applicata, 2007, 37(1-2): 187-194.
    [7]
    WANG X X, ZHU J K, XU Y Q, et al. A novel plasmonic refractive index sensor based on gold/silicon complementary grating structure[J]. Chinese Physics B, 2021, 30(2): 024207. doi: 10.1088/1674-1056/abd690
    [8]
    WANG X X, WU Y, WEN X L, et al. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure[J]. Optical and Quantum Electronics, 2020, 52(5): 238. doi: 10.1007/s11082-020-02360-2
    [9]
    LIU Q, JIANG Y, SUN Y D, et al. Surface plasmon resonance sensor based on U-shaped photonic quasi-crystal fiber[J]. Applied Optics, 2021, 60(6): 1761-1766. doi: 10.1364/AO.419518
    [10]
    LIU Q, SUN J D, SUN Y D, et al. Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film[J]. Optical Materials, 2020, 102: 109800. doi: 10.1016/j.optmat.2020.109800
    [11]
    LI CH G, YAN B, LIU J J. Refractive index sensing characteristics in a D-shaped photonic quasi-crystal fiber sensor based on surface plasmon resonance[J]. Journal of the Optical Society of America A, 2019, 36(10): 1663-1668. doi: 10.1364/JOSAA.36.001663
    [12]
    YAN B, WANG A R, LIU E X, et al. Polarization filtering in the visible wavelength range using surface plasmon resonance and a sunflower-type photonic quasi-crystal fiber[J]. Journal of Physics D:Applied Physics, 2018, 51(15): 155105. doi: 10.1088/1361-6463/aab4ce
    [13]
    SIDDIK A B, HOSSAIN S, PAUL A K, et al. High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance[J]. Sensing and Bio-Sensing Research, 2020, 29: 100350. doi: 10.1016/j.sbsr.2020.100350
    [14]
    HOSSAIN B, ISLAM S M R, HOSSAIN K M T, et al. High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: a numerical design and analysis with external sensing approach[J]. Results in Physics, 2020, 16: 102909. doi: 10.1016/j.rinp.2019.102909
    [15]
    WEI W, NONG J P, ZHANG G W, et al. Graphene-based long-period fiber grating surface plasmon resonance sensor for high-sensitivity gas sensing[J]. Sensors, 2017, 17(1): 2. doi: 10.1109/JSEN.2016.2633500
    [16]
    LIU H, WANG M, WANG Q, et al. Simultaneous measurement of hydrogen and methane based on PCF-SPR structure with compound film-coated side-holes[J]. Optical Fiber Technology, 2018, 45: 1-7. doi: 10.1016/j.yofte.2018.05.007
    [17]
    LIU H, ZHANG Y Z, CHEN C, et al. Transverse-stress compensated methane sensor based on long-period grating in photonic crystal fiber[J]. IEEE Access, 2019, 7: 175522-175530. doi: 10.1109/ACCESS.2019.2951133
    [18]
    LIU E X, LIANG SH W, LIU J J. Double-cladding structure dependence of guiding characteristics in six-fold symmetric photonic quasi-crystal fiber[J]. Superlattices and Microstructures, 2019, 130: 61-67. doi: 10.1016/j.spmi.2019.03.011
    [19]
    LIU E X, TAN W, YAN B, et al. Robust transmission of orbital angular momentum mode based on a dual-cladding photonic quasi-crystal fiber[J]. Journal of Physics D:Applied Physics, 2019, 52(32): 325110. doi: 10.1088/1361-6463/ab2369
    [20]
    LEE Y S, LEE C G, KIM S. Annular core photonic quasi-crystal fiber with wideband nearly zero ultra-flat dispersion, low confinement loss and high nonlinearity[J]. Optik, 2018, 157: 141-147. doi: 10.1016/j.ijleo.2017.10.166
    [21]
    SIVABALAN S, RAINA J P. High normal dispersion and large mode area photonic quasi-crystal fiber stretcher[J]. IEEE Photonics Technology Letters, 2011, 23(16): 1139-1141. doi: 10.1109/LPT.2011.2157817
    [22]
    LIU D M, LIU J CH, WANG H, et al. Laser etching of groove structures with micro-optical fiber-enhanced irradiation[J]. Nanoscale Research Letters, 2012, 7(1): 318. doi: 10.1186/1556-276X-7-318
    [23]
    ZHAO Q K, TIAN F J, YANG X H, et al. Optical fibers with special shaped cores drawn from 3D printed preforms[J]. Optik, 2017, 133: 60-65. doi: 10.1016/j.ijleo.2017.01.002
    [24]
    MARUYAMA T, FUKUI K. Indium-tin oxide thin films prepared by chemical vapor deposition[J]. Journal of Applied Physics, 1991, 70(7): 3848-3851. doi: 10.1063/1.349189
    [25]
    BING P B, SUI J L, WU G F, et al. Analysis of dual-channel simultaneous detection of photonic crystal fiber sensors[J]. Plasmonics, 2020, 15(4): 1071-1076. doi: 10.1007/s11468-020-01131-9
    [26]
    ZHANG Y N, ZHAO Y, WANG Q. Measurement of methane concentration with cryptophane E infiltrated photonic crystal microcavity[J]. Sensors and Actuators B:Chemical, 2015, 209: 431-437. doi: 10.1016/j.snb.2014.12.002
    [27]
    SHAKYA A K, SINGH S. Design of dual polarized tetra core PCF based plasmonic RI sensor for visible-IR spectrum[J]. Optics Communications, 2021, 478: 126372. doi: 10.1016/j.optcom.2020.126372
    [28]
    YAN X, FU R, CHENG T L, et al. A highly sensitive refractive index sensor based on a V-shaped photonic crystal fiber with a high refractive index range[J]. Sensors, 2021, 21(11): 3782. doi: 10.3390/s21113782
    [29]
    LIU Q, SUN J D, SUN Y D, et al. High-sensitivity SPR sensor based on the eightfold eccentric core PQF with locally coated indium tin oxide[J]. Applied Optics, 2020, 59(22): 6484-6489. doi: 10.1364/AO.395605
    [30]
    YANG ZH, XIA L, LI CH, et al. A surface plasmon resonance sensor based on concave-shaped photonic crystal fiber for low refractive index detection[J]. Optics Communications, 2019, 430: 195-203. doi: 10.1016/j.optcom.2018.08.049
    [31]
    ZHAN Y S, LI Y L, WU ZH Q, et al. Surface plasmon resonance-based microfiber sensor with enhanced sensitivity by gold nanowires[J]. Optical Materials Express, 2018, 8(12): 3927-3940. doi: 10.1364/OME.8.003927
    [32]
    PAUL K A, HABIB S, HAI N H, et al. An air-core photonic crystal fiber based plasmonic sensor for high refractive index sensing[J]. Optics Communications, 2020, 464: 125556. doi: 10.1016/j.optcom.2020.125556
    [33]
    LIU Q, ZHAO J, SUN Y D, et al. High-sensitivity methane sensor composed of photonic quasi-crystal fiber based on surface plasmon resonance[J]. Journal of the Optical Society of America A, 2021, 38(10): 1438-1442. doi: 10.1364/JOSAA.432045
    [34]
    GANGWAR R K, SINGH V K. Highly Sensitive surface plasmon resonance based D-shaped photonic crystal fiber refractive index sensor[J]. Plasmonics, 2017, 12(5): 1367-1372. doi: 10.1007/s11468-016-0395-y
    [35]
    HOSSAIN B, HOSSAIN S, ISLAM S M R, et al. Numerical development of high performance quasi D-shape PCF-SPR biosensor: an external sensing approach employing gold[J]. Results in Physics, 2020, 18: 103281. doi: 10.1016/j.rinp.2020.103281
    [36]
    HOSSAIN B, MAHENDIRAN T V, ABDULRAZAK L F, et al. Numerical analysis of gold coating based quasi D-shape dual core PCF SPR sensor[J]. Optical and Quantum Electronics, 2020, 52(10): 446. doi: 10.1007/s11082-020-02555-7
    [37]
    LIANG H, SHEN Y, FENG Y, et al. A surface plasmon resonance temperature sensing unit based on a graphene oxide composite photonic crystal fiber[J]. IEEE Photonics Journal, 2020, 12(3): 7201811.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)

    Article views(174) PDF downloads(182) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return