Volume 15 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
ZHENG Xiang-yuan, YE Xin, LUO Zhi-tao, WANG Kuo-chuan, SONG Bao-qi. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022, 15(4): 780-788. doi: 10.37188/CO.2022-0023
Citation: ZHENG Xiang-yuan, YE Xin, LUO Zhi-tao, WANG Kuo-chuan, SONG Bao-qi. Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter[J]. Chinese Optics, 2022, 15(4): 780-788. doi: 10.37188/CO.2022-0023

Uncertainty analysis and evaluation of a high-precision radiative heat-flux meter

doi: 10.37188/CO.2022-0023
Funds:  Supported by National Key R&D of China (No. 2018YFB0504500, No. 2018YFB0504603)
More Information
  • Corresponding author: yexin@ciomp.ac.cn
  • Received Date: 08 Feb 2022
  • Rev Recd Date: 07 Mar 2022
  • Available Online: 20 Jun 2022
  • In order to meet the requirements of long and highly precise heat flux measurement under laboratory conditions, a new radiative heat flux meter was developed based on the principle of electrical substitution measurement. The radiative heat flux meter can be traced to the International System of Units through self-calibration. Firstly, the system structure of the radiative heat flux meter is briefly described. Combining with the measuring principle of the radiative heat-flux meter, the measurement uncertainty of nine uncertainty components and their combined standard uncertainty in the process of radiative heat-flux meter self-calibration are analyzed and calculated. Then, the uncertainty of a radiometric heat-flux meter is verified by direct comparison with a standard detector calibrated by the National Institute of Metrology of China. Finally, according to the experimental data and analysis results, this paper provides a reference for the optimization design of the heat-flux meter. The experimental results show that the relative standard uncertainty of the radiative heat-flux meter is better than 0.26%, and the normalized error is 0.60, which verifies the validity of the uncertainty evaluation results. The experimental results will guide the development of radiative heat flow meters in the next stage and further improve its performance.

     

  • loading
  • [1]
    孙培杰, 王东保, 杨帆, 等. 运载高空发动机喷流热环境分析及飞行验证[J]. 上海航天,2016,33(S1):23-28. doi: 10.19328/j.cnki.1006-1630.2016.S1.005

    SUN P J, WANG D B, YANG F, et al. Numerical simulation and flight test validation of a launch vehicle altitude engine exhaust plume base heating[J]. Aerospace Shanghai, 2016, 33(S1): 23-28. (in Chinese) doi: 10.19328/j.cnki.1006-1630.2016.S1.005
    [2]
    ZHOU K B, LIU N A, ZHANG L H, et al. Thermal radiation from fire whirls: revised solid flame model[J]. Fire Technology, 2014, 50(6): 1573-1587. doi: 10.1007/s10694-013-0360-7
    [3]
    余晓娅, 刘立拓, 李瑞, 等. 高超声速再入试验的辐射光谱定量测量[J]. 中国光学,2020,13(1):87-94. doi: 10.3788/co.20201301.0087

    YU X Y, LIU L T, LI R, et al. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. (in Chinese) doi: 10.3788/co.20201301.0087
    [4]
    闫指江, 沈丹, 吴彦森, 等. 多喷管运载火箭底部热环境研究[J]. 导弹与航天运载技术,2021(1):105-109,114. doi: 10.7654/j.issn.1004-7182.20210120

    YAN ZH J, SHEN D, WU Y S, et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles, 2021(1): 105-109,114. (in Chinese) doi: 10.7654/j.issn.1004-7182.20210120
    [5]
    绳春晨, 胡芃, 程晓舫, 等. 保护法瞬态辐射热流计原理及瞬态响应特性[J]. 太阳能学报,2017,38(4):1092-1906.

    SHENG CH CH, HU P, CHENG X F, et al. Principle and transient response characteristics of protection transient radiant heat flux meter[J]. Acta Energiae Solaris Sinica, 2017, 38(4): 1092-1906. (in Chinese)
    [6]
    GIFFORD A R, HUBBLE D O, PULLINS C A, et al. Durable heat flux sensor for extreme temperature and heat flux environments[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(1): 69-76. doi: 10.2514/1.42298
    [7]
    高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程,2020,37(3):218-227. doi: 10.12126/see.2020.03.002

    GAO Q H, QIE D F. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227. (in Chinese) doi: 10.12126/see.2020.03.002
    [8]
    MURTHY A V, TSAI B K, GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4): 479-488. doi: 10.6028/jres.102.032
    [9]
    张磊, 谢贤忱, 吴勇, 等. 激光吸收涂层性能研究[J]. 中国光学,2021,14(3):560-565. doi: 10.37188/CO.2020-0154

    ZHANG L, XIE X CH, WU Y, et al. Performance studies on laser absorbing coating[J]. Chinese Optics, 2021, 14(3): 560-565. (in Chinese) doi: 10.37188/CO.2020-0154
    [10]
    田玉坤, 何钦华, 吴江, 等. Gardon式热流传感器测试误差分析[J]. 强度与环境,2019,46(2):48-55. doi: 10.19447/j.cnki.11-1773/v.2019.02.009

    TIAN Y K, HE Q H, WU J, et al. Test error analysis of Gardon heat flux gauges[J]. Structure &Environment Engineering, 2019, 46(2): 48-55. (in Chinese) doi: 10.19447/j.cnki.11-1773/v.2019.02.009
    [11]
    李建玉, 刘庆, 徐文清, 等. 用于多波段激光大气透过率测量的太阳辐射计[J]. 光学 精密工程,2020,28(2):261-270.

    LI J Y, LIU Q, XU W Q, et al. Solar radiometer for measurement of multi-waveband laser atmospheric transmittance[J]. Optics and Precision Engineering, 2020, 28(2): 261-270. (in Chinese)
    [12]
    SHARKOV A V, KORABLEV V A, NEKRASOV A S, et al. A radiometer for measuring high-intensity heat flux density and a method of calibrating it[J]. Measurement Techniques, 2012, 54(11): 1276-1279. doi: 10.1007/s11018-012-9876-3
    [13]
    PULLINS C A. High temperature heat flux measurement: sensor design, calibration, and applications[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2011.
    [14]
    杨滨赫, 蔡引娣, 文志祥, 等. 长距离激光测量中光束漂移的自动补偿[J]. 光学 精密工程,2020,28(11):2393-2402. doi: 10.37188/OPE.20202811.2393

    YANG B H, CAI Y D, WEN ZH X, et al. Automatic compensation method for beam drift in long-distance laser measurement[J]. Optics and Precision Engineering, 2020, 28(11): 2393-2402. (in Chinese) doi: 10.37188/OPE.20202811.2393
    [15]
    衣小龙, 杨振岭, 叶新, 等. 低温辐射计斜底腔吸收比测量[J]. 光学 精密工程,2015,23(10):2733-2739. doi: 10.3788/OPE.20152310.2733

    YI X L, YANG ZH L, YE X, et al. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Optics and Precision Engineering, 2015, 23(10): 2733-2739. (in Chinese) doi: 10.3788/OPE.20152310.2733
    [16]
    衣小龙, 方伟, 林延东, 等. 空间低温绝对辐射初级基准实验特性及测量精度评估[J]. 光学 精密工程,2021,29(1):10-20. doi: 10.37188/OPE.20212901.0010

    YI X L, FANG W, LIN Y D, et al. Experimental characteristics and measurement accuracy evaluation of space cryogenic absolute radiometric primary benchmark[J]. Optics and Precision Engineering, 2021, 29(1): 10-20. (in Chinese) doi: 10.37188/OPE.20212901.0010
    [17]
    高帅, 李元, 白廷柱, 等. 交叉定标中的不确定度分析及定标系数计算改进[J]. 中国光学,2020,13(3):568-576.

    GAO SH, LI Y, BAI Y ZH, et al. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J]. Chinese Optics, 2020, 13(3): 568-576. (in Chinese)
    [18]
    刘国栋, 方伟, 宋宝奇, 等. 太阳辐射计的衍射效应修正[J]. 中国光学,2018,11(5):851-859. doi: 10.3788/co.20181105.0851

    LIU G D, FANG W, SONG B Q, et al. Diffraction effect correction of solar radiometer[J]. Chinese Optics, 2018, 11(5): 851-859. (in Chinese) doi: 10.3788/co.20181105.0851
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(7)

    Article views(509) PDF downloads(91) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return