Volume 15 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
LI Jian-cong, LIN Hong-an, LUO Jia-xiong, WU Yan-xiong, WANG Zhi. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. doi: 10.37188/CO.2022-0018
Citation: LI Jian-cong, LIN Hong-an, LUO Jia-xiong, WU Yan-xiong, WANG Zhi. Optical design of space gravitational wave detection telescope[J]. Chinese Optics, 2022, 15(4): 761-769. doi: 10.37188/CO.2022-0018

Optical design of space gravitational wave detection telescope

doi: 10.37188/CO.2022-0018
Funds:  Supported by National Natural Science Foundation of China (No. 62075214); Science and Technology Plan Project of Guangdong Province (No. X190311UZ190); Research and Development Projects in Key Areas of Guangdong Province (No. 2020B1111040001)
More Information
  • Corresponding author: 364477424@qq.comwz070611@126.com
  • Received Date: 22 Jan 2022
  • Accepted Date: 22 Mar 2022
  • Rev Recd Date: 22 Feb 2022
  • Available Online: 27 Apr 2022
  • In space gravitational wave detection, the telescope is an important part of the space laser interferometry system. The wavefront error at the exit pupil of the telescope is coupled with the Tilt-To-Length (TTL) noise, which becomes the main source of noise in space gravitational wave detection. Firstly, based on the interference model between a flat-top beam and a Gaussian beam, the Fringe Zernike polynomial is used to characterize the wavefront error at the exit pupil of the telescope, and the LISA Pathfinder (LPF) signal is used to analyze the coupling mechanism of the wavefront error at the exit pupil and the TTL noise. Secondly, the Monte Carlo analysis method is used to study the influence of the proportion of low-order aberrations on the TTL coupling noise under different numerical wavefront errors, and determine the low-order aberration proportions which meets the requirements of TTL coupling noise control at the exit pupil in the design of the telescope optical system under different numerical wavefront errors. Finally, based on the above theoretical analysis results and the aberration control requirements, the optical design of the space gravitational wave detection telescope is completed. The diameter of the entrance pupil of the telescope is 200 mm, and the RMS value of the wavefront error at the exit pupil is 0.01908λ. The proportion of low-order aberrations is not higher than 50%. The analysis results show that the TTL coupling noise does not exceed 8.25 pm/μrad when the beam jitter is within ±300 μrad. Through tolerance analysis, the maximum TTL coupling noise is determined to be 15.50 pm/μrad, which meets the requirements of space gravitational wave detection.

     

  • loading
  • [1]
    罗子人, 白姗, 边星, 等. 空间激光干涉引力波探测[J]. 力学进展,2013,43(4):415-447. doi: 10.6052/1000-0992-13-044

    LUO Z R, BAI SH, BIAN X, et al. Gravitational wave detection by space laser interferometry[J]. Advances in Mechanics, 2013, 43(4): 415-447. (in Chinese) doi: 10.6052/1000-0992-13-044
    [2]
    ABBOTT B P, ABBOTT R, ABBOTT T D, et al. Observation of gravitational waves from a binary black hole merger[J]. Physical Review Letters, 2016, 116(6): 061102. doi: 10.1103/PhysRevLett.116.061102
    [3]
    王智, 马军, 李静秋. 空间引力波探测计划-LISA系统设计要点[J]. 中国光学,2015,8(6):980-987. doi: 10.3788/co.20150806.0980

    WANG ZH, MA J, LI J Q. Space-based gravitational wave detection mission: design highlights of LISA system[J]. Chinese Optics, 2015, 8(6): 980-987. (in Chinese) doi: 10.3788/co.20150806.0980
    [4]
    王璐钰, 李玉琼, 蔡榕. 空间激光干涉仪激光抖动噪声抑制研究[J]. 中国光学,2021,14(6):1426-1434. doi: 10.37188/CO.2021-0045

    WANG L Y, LI Y Q, CAI R. Noise suppression of laser jitter in space laser interferometer[J]. Chinese Optics, 2021, 14(6): 1426-1434. (in Chinese) doi: 10.37188/CO.2021-0045
    [5]
    王登峰, 姚鑫, 焦仲科, 等. 面向天基引力波探测的时间延迟干涉技术[J]. 中国光学,2021,14(2):275-288. doi: 10.37188/CO.2020-0098

    WANG D F, YAO X, JIAO ZH K, et al. Time-delay interferometry for space-based gravitational wave detection[J]. Chinese Optics, 2021, 14(2): 275-288. (in Chinese) doi: 10.37188/CO.2020-0098
    [6]
    DANZMANN K, The LISA Study Team. LISA: laser interferometer space antenna for gravitational wave measurements[J]. Classical and Quantum Gravity, 1996, 13(11A): A247-A250. doi: 10.1088/0264-9381/13/11A/033
    [7]
    LUO Z R, GUO Z K, JIN G, et al. A brief analysis to Taiji: science and technology[J]. Results in Physics, 2020, 16: 102918. doi: 10.1016/j.rinp.2019.102918
    [8]
    LUO J, CHEN L SH, DUAN H Z, et al. TianQin: a space-borne gravitational wave detector[J]. Classical and Quantum Gravity, 2016, 33(3): 035010. doi: 10.1088/0264-9381/33/3/035010
    [9]
    DONG Y H, LIU H SH, LUO Z R, et al. A comprehensive simulation of weak-light phase-locking for space-borne gravitational wave antenna[J]. Science China Technological Sciences, 2016, 59(5): 730-737. doi: 10.1007/s11431-016-6043-0
    [10]
    CHWALLA M, DANZMANN K, BARRANCO G F, et al. Design and construction of an optical test bed for LISA imaging systems and tilt-to-length coupling[J]. Classical and Quantum Gravity, 2016, 33(24): 245015. doi: 10.1088/0264-9381/33/24/245015
    [11]
    SUTTON A, MCKENZIE K, WARE B, et al. Laser ranging and communications for LISA[J]. Optics Express, 2010, 18(20): 20759-20773. doi: 10.1364/OE.18.020759
    [12]
    SCHUSTER S, WANNER G, TRÖBS M, et al. Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams[J]. Applied Optics, 2015, 54(5): 1010-1014. doi: 10.1364/AO.54.001010
    [13]
    SASSO C P, MANA G, MOTTINI S. Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering wavefronts[J]. Classical and Quantum Gravity, 2018, 35(24): 245002. doi: 10.1088/1361-6382/aaea0f
    [14]
    ZHAO Y, SHEN J, FANG CH, et al. Tilt-to-length noise coupled by wavefront errors in the interfering beams for the space measurement of gravitational waves[J]. Optics Express, 2020, 28(17): 25545-25561. doi: 10.1364/OE.397097
    [15]
    ZHAO Y, SHEN J, FANG CH, et al. Far-field optical path noise coupled with the pointing jitter in the space measurement of gravitational waves[J]. Applied Optics, 2021, 60(2): 438-444. doi: 10.1364/AO.405467
    [16]
    王智, 沙巍, 陈哲, 等. 空间引力波探测望远镜初步设计与分析[J]. 中国光学,2018,11(1):131-151. doi: 10.3788/co.20181101.0131

    WANG ZH, SHA W, CHEN ZH, et al. Preliminary design and analysis of telescope for space gravitational wave detection[J]. Chinese Optics, 2018, 11(1): 131-151. (in Chinese) doi: 10.3788/co.20181101.0131
    [17]
    李钰鹏, 王智, 沙巍, 等. 空间引力波望远镜主镜组件的结构设计[J]. 红外与激光工程,2018,47(8):0818004. doi: 10.3788/IRLA201847.0818004

    LI Y P, WANG ZH, SHA W, et al. Structural design of primary mirror subassembly for spatial gravitational wave telescope[J]. Infrared and Laser Engineering, 2018, 47(8): 0818004. (in Chinese) doi: 10.3788/IRLA201847.0818004
    [18]
    陈胜楠, 姜会林, 王春艳, 等. 大倍率离轴无焦四反光学系统设计[J]. 中国光学,2020,13(1):179-188. doi: 10.3788/co.20201301.0179

    CHEN SH N, JIANG H L, WANG CH Y, et al. Design of off-axis four-mirror afocal optical system with high magnification[J]. Chinese Optics, 2020, 13(1): 179-188. (in Chinese) doi: 10.3788/co.20201301.0179
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)  / Tables(7)

    Article views(371) PDF downloads(143) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return