Volume 15 Issue 3
May  2022
Turn off MathJax
Article Contents
MA Yan, ZHANG Shuai, LIU Yuan, MA Chi. Lunar long-wave infrared radiation characteristics based on space-based quantitative measured data[J]. Chinese Optics, 2022, 15(3): 525-533. doi: 10.37188/CO.2021-0202
Citation: MA Yan, ZHANG Shuai, LIU Yuan, MA Chi. Lunar long-wave infrared radiation characteristics based on space-based quantitative measured data[J]. Chinese Optics, 2022, 15(3): 525-533. doi: 10.37188/CO.2021-0202

Lunar long-wave infrared radiation characteristics based on space-based quantitative measured data

Funds:  Supported by the Key Subject of National Natural Science Fund Major Project of China (No. 61890965)
More Information
  • Corresponding author: zhangshuaioec@163.com
  • Received Date: 21 Nov 2021
  • Rev Recd Date: 16 Dec 2021
  • Available Online: 12 Apr 2022
  • Publish Date: 20 May 2022
  • The moon is an ideal on-orbit radiation calibration source. In order to improve the measurement accuracy of long-wave infrared radiation for satellites and other on-orbit aircrafts, the characteristics of lunar long-wave infrared radiation are studied in this paper. The law of lunar long-wave infrared radiation is explored taking the moon as a point target or disk target, and the calibration accuracy is calculated based on the measured space-based data by analyzing the types of lunar radiation sources and radiation detection mechanism, and by establishing a radiation detection model. First, the lunar radiation is studied from two aspects of lunar self radiation and reflected solar radiation. The lunar surface temperature is fitted accurately, the lunar infrared radiation model is established, and the mathematical relationship is simulated between the radiation measurement results of space-based satellites and the lunar phase angles. Second, the key parameters of conversion between gray-scale and irradiation images are obtained through calibrating the radiation of satellite infrared loads in the ground. The lunar long-wave infrared radiation measurement model is then established. Finally, the reflectance and emissivity of the lunar surface are calculated based on the measured data taken by the “Jilin-1” satellite on the moon. The experimental results show that the long-wave infrared radiation characteristics of the lunar surface obtained by the proposed menthod are accurate and robust. Moreover, there are nearly 7.18% and 5.71% of the fitting errors in the obtained data compared with Apollo 12070 laboratory measurement results and diviner measured data, respectively.

     

  • loading
  • [1]
    朱军, 李永昌, 白照广, 等. 低轨高分辨率遥感卫星姿态机动对月定标方法[J]. 光学 精密工程,2020,28(9):1913-1923. doi: 10.37188/OPE.20202809.1913

    ZHU J, LI Y CH, BAI ZH G, et al. Lunar calibration method through attitude maneuver of low-earth-orbit and high-resolution remote sensing satellites[J]. Optics and Precision Engineering, 2020, 28(9): 1913-1923. (in Chinese) doi: 10.37188/OPE.20202809.1913
    [2]
    NODA H, ARAKI H, GOOSSENS S, et al. Illumination conditions at the lunar polar regions by KAGUYA(SELENE) laser altimeter[J]. Geophysical Research Letters, 2008, 35(24): L24203. doi: 10.1029/2008GL035692
    [3]
    BUSSEY D B J, MCGOVERN J A, SPUDIS P D, et al. Illumination conditions of the south pole of the Moon derived using Kaguya topography[J]. Icarus, 2010, 208(2): 558-564. doi: 10.1016/j.icarus.2010.03.028
    [4]
    KIEFFER H H. Photometric stability of the lunar surface[J]. Icarus, 1997, 130(2): 323-327. doi: 10.1006/icar.1997.5822
    [5]
    EPLEE R E JR, SUN J Q, MEISTER G, et al. Cross calibration of SeaWiFS and MODIS using on-orbit observations of the Moon[J]. Applied Optics, 2011, 50(2): 120-133. doi: 10.1364/AO.50.000120
    [6]
    EPLEE R E JR, BARNES R A, PATT F S, et al. SeaWiFS lunar calibration methodology after six years on orbit[J]. Proceedings of SPIE, 2004, 5542: 1-13. doi: 10.1117/12.556408
    [7]
    吴荣华, 张鹏, 杨忠东, 等. 基于月球反射的遥感器定标跟踪监测[J]. 遥感学报,2016,20(2):278-289.

    WU R H, ZHANG P, YANG ZH D, et al. Monitor radiance calibration of the remote sensing instrument with reflected lunar irradiance[J]. Journal of Remote Sensing, 2016, 20(2): 278-289. (in Chinese)
    [8]
    张璐, 张鹏, 胡秀清, 等. 月球辐射照度模型比对及地基对月观测验证[J]. 遥感学报,2017,21(6):864-870.

    ZHANG L, ZHANG P, HU X Q, et al. Comparison of lunar irradiance models and validation of lunar observation on Earth[J]. Journal of Remote Sensing, 2017, 21(6): 864-870. (in Chinese)
    [9]
    LEBLANC F, CHAUFRAY J Y. Mercury and moon he exospheres: analysis and modeling[J]. Icarus, 2011, 216(2): 551-559. doi: 10.1016/j.icarus.2011.09.028
    [10]
    HURLEY D M, SARANTOS M, GRAVA C, et al. An analytic function of lunar surface temperature for exospheric modeling[J]. Icarus, 2015, 255: 159-163. doi: 10.1016/j.icarus.2014.08.043
    [11]
    MEEUS J. Astronomical Algorithms[M]. Richmond: Willmann-Bell, 2005.
    [12]
    路鹏, 陈圣波, 崔腾飞, 等. 月球表面矿物二向性反射特性实验研究[J]. 岩石学报,2016,32(1):107-112.

    LU P, CHEN SH B, CUI T F, et al. Experimental study on bidirectional reflectance characteristics of minerals on lunar surface[J]. Acta Petrologica Sinica, 2016, 32(1): 107-112. (in Chinese)
    [13]
    高帅, 李元, 白廷柱, 等. 交叉定标中的不确定度分析及定标系数计算改进[J]. 中国光学,2020,13(3):568-576.

    GAO SH, LI Y, BAI T ZH, et al. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J]. Chinese Optics, 2020, 13(3): 568-576. (in Chinese)
    [14]
    李元, 张勇, 胡丽琴, 等. 中国遥感卫星辐射校正场敦煌戈壁场区光环境变化研究[J]. 中国光学,2021,14(5):1231-1242. doi: 10.37188/CO.2020-0129

    LI Y, ZHANG Y, HU L Q, et al. Investigation of optical environment changes in the Dunhuang Gobi site of the Chinese radiometric calibration sites[J]. Chinese Optics, 2021, 14(5): 1231-1242. (in Chinese) doi: 10.37188/CO.2020-0129
    [15]
    刘群, 刘崇, 朱小磊, 等. 星载海洋激光雷达最佳工作波长分析[J]. 中国光学,2021,13(1):148-155.

    LIU Q, LIU CH, ZHU X L, et al. Analysis of the optimal operating wavelength of spaceborne oceanic lidar[J]. Chinese Optics, 2021, 13(1): 148-155. (in Chinese)
    [16]
    牛明慧. 光学遥感仪器月球定标技术研究[D]. 上海: 中国科学院大学(中国科学院上海技术物理研究所), 2018: 54-58.

    NIU M H. Research on the lunar calibration technologies of optical remote sensing radiometers[D]. Shanghai: University of Chinese Academy of Sciences (Shanghai Institute of Technical Physics of the Chinese Academy of Sciences), 2018: 54-58. (in Chinese)
    [17]
    REN H ZH, NIE J, DONG J J, et al. Lunar surface temperature and emissivity retrieval from diviner lunar radiometer experiment sensor[J]. Earth and Space Science, 2021, 8(1): e2020EA001436.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article views(620) PDF downloads(141) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return