Volume 15 Issue 4
Jul.  2022
Turn off MathJax
Article Contents
HE Zhen, ZHUO Li-qiang, LI Zhi, ZHUANG Feng-jiang, SU Shao-jian, LIN Zhi-li, QIU Wei-bin. Slow light in graphene plasmonic time crystals[J]. Chinese Optics, 2022, 15(4): 845-861. doi: 10.37188/CO.2021-0201
Citation: HE Zhen, ZHUO Li-qiang, LI Zhi, ZHUANG Feng-jiang, SU Shao-jian, LIN Zhi-li, QIU Wei-bin. Slow light in graphene plasmonic time crystals[J]. Chinese Optics, 2022, 15(4): 845-861. doi: 10.37188/CO.2021-0201

Slow light in graphene plasmonic time crystals

doi: 10.37188/CO.2021-0201
Funds:  Supported by National Natural Science Foundation of China (No. 11774103)
More Information
  • Author Bio:

    HE Zhen (1995—), male, from Ganzhou, Jiangxi Province, a master's degree student, received a bachelor's degree in electronic science and technology from Jingdezhen Ceramic Institute in 2018, mainly engaged in the research of photonic crystal materials and optical topological insulators

    QIU Weibin (1971—), male, born in Fujian Province, Ph.D., professor, received his Ph.D. in microelectronics and solid-state electronics and specialty from Institute of Semiconductors, Chinese Academy of Sciences, Beijing in 2003, mainly engaged in the research of semiconductor electronic devices, photonic devices, circuits and systems, supramolecules, topology and topological plasmons

  • Corresponding author: wbqiu@hqu.edu.cn
  • Received Date: 18 Nov 2021
  • Rev Recd Date: 16 Dec 2021
  • Available Online: 01 Jun 2022
  • In order to control the group velocity of slow light, a graphene plasmon time crystal slow light waveguide was constructed and used for the waveguide to construct the Zigzag topology interface channel for transmission. When the structure is fixed, the external bias voltage of the graphene nano-disk can be dynamically adjusted to obtain the dispersion curves at different times. The corresponding group velocity is studied. First, the graphene plasmon time crystal is obtained by applying the bias voltages periodically varying with time to different regions of the honeycomb arranged graphene nano-disks. When the time translation symmetry of the crystal is destroyed, the crystal band gap will periodically appear and disappear with time, and exhibit the band topology effect. The Zigzag topology interface is constructed to analyze the topological interface state and its slow light mode existing at different moments. Then the corresponding group velocity is calculated according to the dispersion curve. Finally, a slow light waveguide model is established through numerical simulation, and the field enhancement process is detected at the light energy capture point of the waveguide. Simulation results show that the waveguide designed based on the graphene plasmon time crystal can achieve a good slow light transmission effect, and the group velocity of the light can be dynamically adjusted when the waveguide structure is fixed. Under slow light transmission, the light energy capture point realizes the field enhancement effect. The slow light waveguide with simple structure can be dynamically tuned, and has broad application prospects in slow light modulation devices and optical storage devices.


  • loading
  • [1]
    JIANG X P, CHEN D B, ZHANG ZH J, et al. Dual-channel optical switch, refractive index sensor and slow light device based on a graphene metasurface[J]. Optics Express, 2020, 28(23): 34079-34092. doi: 10.1364/OE.412442
    TORRIJOS-MORÁN L, GRIOL A, GARCÍA-RUPÉREZ J, et al. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides[J]. Light:Science &Applications, 2021, 10(1): 16.
    OSSIANDER M, HUANG Y W, CHEN W T, et al. Slow light nanocoatings for ultrashort pulse compression[J]. Nature Communications, 2021, 12(1): 6518. doi: 10.1038/s41467-021-26920-6
    YAN S Q, ZHU X L, FRANDSEN L H, et al. Slow-light-enhanced energy efficiency for graphene microheaters on silicon photonic crystal waveguides[J]. Nature Communications, 2017, 8: 14411. doi: 10.1038/ncomms14411
    ZHU K T, DENG T S, SUN Y, et al. Slow light property in ring-shape-hole slotted photonic crystal waveguide[J]. Optics Communications, 2013, 290: 87-91. doi: 10.1016/j.optcom.2012.10.055
    SCHEUER J. Optimal interfacing with coupled-cavities slow-light waveguides: mimicking periodic structures with a compact device[J]. Optics Express, 2017, 25(14): 16260-16273. doi: 10.1364/OE.25.016260
    CHEN H J. Multiple-Fano-resonance-induced fast and slow light in the hybrid nanomechanical-resonator system[J]. Physical Review A, 2021, 104(1): 013708. doi: 10.1103/PhysRevA.104.013708
    NOTOMI M, YAMADA K, SHINYA A, et al. Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs[J]. Physical Review Letters, 2001, 87(25): 253902. doi: 10.1103/PhysRevLett.87.253902
    ITO H, KUSUNOKI Y, MAEDA J, et al. Wide beam steering by slow-light waveguide gratings and a prism lens[J]. Optica, 2020, 7(1): 47-52. doi: 10.1364/OPTICA.381484
    DONG J W, CHEN X D, ZHU H Y, et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 2017, 16(3): 298-302. doi: 10.1038/nmat4807
    YOSHIMI H, YAMAGUCHI T, OTA Y, et al. Slow light waveguides in topological valley photonic crystals[J]. Optics Letters, 2020, 45(9): 2648-2651. doi: 10.1364/OL.391764
    KHANIKAEV A B, SHVETS G. Two-dimensional topological photonics[J]. Nature Photonics, 2017, 11(12): 763-773. doi: 10.1038/s41566-017-0048-5
    LUSTIG E, SHARABI Y, SEGEV M. Topological aspects of photonic time crystals[J]. Optica, 2018, 5(11): 1390-1395. doi: 10.1364/OPTICA.5.001390
    WANG N, ZHANG ZH Q, CHAN C T. Photonic Floquet media with a complex time-periodic permittivity[J]. Physical Review B, 2018, 98(8): 085142. doi: 10.1103/PhysRevB.98.085142
    GIERGIEL K, DAUPHIN A, LEWENSTEIN M, et al. Topological time crystals[J]. New Journal of Physics, 2019, 21(5): 052003. doi: 10.1088/1367-2630/ab1e5f
    GANGARAJ S A H, MONTICONE F. Topological waveguiding near an exceptional point: defect-immune, slow-light, and loss-immune propagation[J]. Physical Review Letters, 2018, 121(9): 093901. doi: 10.1103/PhysRevLett.121.093901
    JIN D F, CHRISTENSEN T, SOLJAČIĆ M, et al. Infrared topological plasmons in graphene[J]. Physical Review Letters, 2017, 118(24): 245301. doi: 10.1103/PhysRevLett.118.245301
    WANG Y P, YOU J W, LAN ZH H, et al. Topological valley plasmon transport in bilayer graphene metasurfaces for sensing applications[J]. Optics Letters, 2020, 45(11): 3151-3154. doi: 10.1364/OL.393302
    GUO X, WU X, CUI H, et al. Slow light performance enhancement of graphene-based photonic crystal waveguide[J]. Physics Letters A, 2019, 383(16): 1983-1987. doi: 10.1016/j.physleta.2019.03.032
    XIONG L, FORSYTHE C, JUNG M, et al. Photonic crystal for graphene plasmons[J]. Nature Communications, 2019, 10(1): 4780. doi: 10.1038/s41467-019-12778-2
    WU X X, YAN M, TIAN J X, et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals[J]. Nature Communications, 2017, 8(1): 1304. doi: 10.1038/s41467-017-01515-2
    YOU J W, LAN ZH H, BAO Q L, et al. Valley-Hall topological plasmons in a graphene nanohole plasmonic crystal waveguide[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26(6): 4600308.
    HAO Y, KONG M, LU J. Control of light speed in single-ring microresonators with gain[J]. Chinese Optics, 2009, 2(6): 482-488. (in Chinese) doi: 10.3969/j.issn.2095-1531.2009.06.003
    CAO T, FANG L H, CAO Y, et al. Dynamically reconfigurable topological edge state in phase change photonic crystals[J]. Science Bulletin, 2019, 64(12): 814-822. doi: 10.1016/j.scib.2019.02.017
    HONG W, WANG L Q, LIN J P. Research progress of polymeric hierarchical microstructures and their properties[J]. Chinese Journal of Applied Chemistry, 2021, 38(10): 1310-1325. (in Chinese)
    ZHUANG S N, CHEN J F, LIANG W Y, et al. Zero GVD slow-light originating from a strong coupling of one-way modes in double-channel magneto-optical photonic crystal waveguides[J]. Optics Express, 2021, 29(2): 2478-2487. doi: 10.1364/OE.412460
    ZURITA-SÁNCHEZ J R, HALEVI P, CERVANTES-GONZÁLEZ J C. Reflection and transmission of a wave incident on a slab with a time-periodic dielectric function ϵ (t)[J]. Physical Review A, 2009, 79(5): 053821. doi: 10.1103/PhysRevA.79.053821
    CAO T, LIU K, LI Y, et al. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. (in Chinese) doi: 10.37188/CO.2021-0080
    FAN ZH, ZHANG SH SH, TANG J H, et al. Structure, preparation and application of graded nanomaterials[J]. Chinese Journal of Applied Chemistry, 2020, 37(5): 489-501. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.05.190248
    MA J, WANG ZH G. Band structure and topological phase transition of photonic time crystals[J]. Optics Express, 2019, 27(9): 12914-12922. doi: 10.1364/OE.27.012914
    SHARABI Y, LUSTIG E, SEGEV M. Disordered photonic time crystals[J]. Physical Review Letters, 2021, 126(16): 163902. doi: 10.1103/PhysRevLett.126.163902
    CHENG Q Q, PAN Y M, WANG H Q, et al. Observation of anomalous π mode in photonic floquet engingeering[J]. Physical Review Letters, 2019, 12: 173901. doi: 10.1103/PhysRevLett.122.173901
    ZENG L W, XU J, WANG CH E, et al. Photonic time crystals[J]. Scientific Reports, 2017, 7(1): 17165. doi: 10.1038/s41598-017-17354-6
    PAN Y M, WANG B. Time-crystalline phases and period-doubling oscillations in one-dimensional Floquet topological insulators[J]. Physical Review Research, 2020, 2(4): 043239. doi: 10.1103/PhysRevResearch.2.043239
    LIU H, WANG H N, XIE B Y, et al. Progress of two-dimensional photonic topological insulators[J]. Chinese Optics, 2021, 14(4): 935-954. (in Chinese) doi: 10.37188/CO.2021-0076
    FENG L, ZHU X F,YANG S, et al. Deomonstration of a large-scale optical exceptional point structure[J]. Optics Express, 2014, 22(2): 1760. doi: 10.1364/OE.22.001760
    RAZA S, BOZHEVOLNYI S I. Slow-light plasmonic metamaterial based on dressed-state analog of electromagnetically induced transparency[J]. Optics Letters, 2015, 40(18): 4253-4256. doi: 10.1364/OL.40.004253
    ABOOD I, ELSHAHAT S, OUYANG ZH B. High figure of merit optical buffering in coupled-slot slab photonic crystal waveguide with ionic liquid[J]. Nanomaterials, 2020, 10(9): 1742. doi: 10.3390/nano10091742
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(180) PDF downloads(93) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint