| Citation: | CHEN Wei-shuai, WANG Hao-bing, TAO Jin, Gao Dan, LV Jin-guang, QIN Yu-xin, GUO Guang-tong, LI Xiang-lan, WANG Qiang, ZHANG Jun, LIANG Jing-qiu, WANG Wei-biao. A study on the epitaxial structure and characteristics of high-efficiency blue silicon photodetectors[J]. Chinese Optics, 2022, 15(3): 568-591. doi: 10.37188/CO.2021-0188 | 
	                | [1] | 
					 DENG J ZH, CHENG X H. Visible light vehicle lamp signal transmission control device[J]. Optics and Precision Engineering, 2020, 28(12): 2710-2718. (in Chinese) doi:  10.37188/OPE.20202812.2710 
						
					 | 
			
| [2] | 
					 DONG B, TONG SH F, ZHANG P, et al. Design of a 20 m underwater wireless optical communication system based on blue LED[J]. Chinese Optics, 2021, 14(6): 1451-1458. (in Chinese) doi:  10.37188/CO.2020-0190 
						
					 | 
			
| [3] | 
					 LIU Y, CAI X P, LIN L, et al. Research on the fusion technology of LED visible optical communication network with Ethernet[J]. Optical Communication Technology, 2019, 43(1): 1-4. (in Chinese) 
						
					 | 
			
| [4] | 
					 XU X Y, YUE D W. Orthogonal frequency division multiplexing modulation techniques in visible light communication[J]. Chinese Optics, 2021, 14(3): 516-527. (in Chinese) doi:  10.37188/CO.2020-0051 
						
					 | 
			
| [5] | 
					 ZHOU ZH, MIAO W N, LI Y, et al. Influence mechanism of GaN-LED's PN junction area on modulation bandwidth in visible light communication[J]. Optics and Precision Engineering, 2020, 28(7): 1494-1499. (in Chinese) doi:  10.37188/OPE.20202807.1494 
						
					 | 
			
| [6] | 
					 ZHOU Q CH, BAI Z L, LU L, et al. Remote phosphor technology for white LED applications: advances and prospects[J]. Chinese Optics, 2015, 8(3): 313-328. (in Chinese) doi:  10.3788/co.20150803.0313 
						
					 | 
			
| [7] | 
					 CHEN X B, MIN CH Y. Wireless communication that we can see——visible light communication[J]. Physics, 2020, 49(10): 688-696. (in Chinese) doi:  10.7693/wl20201005 
						
					 | 
			
| [8] | 
					 GAO X M. Study on silicon based nitride homologous optoelectronic integrated chip for visible light communication[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2018. (in Chinese) 
						
					 | 
			
| [9] | 
					 ZIMMERMANN R, BRAUN F, ACHTNICH T, et al. Silicon photomultipliers for improved detection of low light levels in miniature near-infrared spectroscopy instruments[J]. Biomedical Optics Express, 2013, 4(5): 659-666. doi:  10.1364/BOE.4.000659 
						
					 | 
			
| [10] | 
					 WEI J T. The structure design and research of new type APD based on silicon and germanium[D]. Harbin: Harbin Engineering University, 2016. (in Chinese) 
						
					 | 
			
| [11] | 
					 ZHU X X, GE Y, LI J J, et al. Research progress of quantum dot enhanced silicon-based photodetectors[J]. Chinese Optics, 2020, 13(1): 62-74. (in Chinese) doi:  10.3788/co.20201301.0062 
						
					 | 
			
| [12] | 
					 WANG Y M, SHU H W, HAN X Y. High-precision silicon-based integrated optical temperature sensor[J]. Chinese Optics, 2021, 14(6): 1355-1361. (in Chinese) doi:  10.37188/CO.2021-0054 
						
					 | 
			
| [13] | 
					 MOLL J L, VAN OVERSTRAETEN R. Charge multiplication in silicon p-n junctions[J]. Solid-State Electronics, 1963, 6(2): 147-157. doi:  10.1016/0038-1101(63)90009-1 
						
					 | 
			
| [14] | 
					 PEPIN C M, DAUTET H, BERGERON M, et al.. New UV-enhanced, ultra-low noise silicon avalanche photodiode for radiation detection and medical imaging[C]. IEEE Nuclear Science Symposuim & Medical Imaging Conference, IEEE, 2010: 1740-1746. 
						
					 | 
			
| [15] | 
					 OTHMAN M A, YASIN N Y M, ARSHAD T S M, et al.. Variable intrinsic region in CMOS PIN photodiode for I–V characteristic analysis[C]. Proceedings of the 1st International Conference on Communication and Computer Engineering, Springer, 2015: 95-101. 
						
					 | 
			
| [16] | 
					 WANG X D. Optimization of the enhancement of the Si-based APD for near-ultraviolet detection through structural design[D]. Harbin: Harbin Institute of Technology, 2015. (in Chinese) 
						
					 | 
			
| [17] | 
					 HUO L ZH, TAN H SH, HE R, et al. Research of blue-violet enhanced silicon photomultiplier[J]. Laser &Optoelectronics Progress, 2015, 52(11): 110401. (in Chinese) 
						
					 | 
			
| [18] | 
					 LU H H. Simulation study on silicon-based blue-light enhanced APD detector for visible light communication[D]. Guangzhou: Jinan University, 2019. (in Chinese) 
						
					 | 
			
| [19] | 
					 SCHINKE C, PEEST P C, SCHMIDT J, et al. Uncertainty analysis for the coefficient of band-to-band absorption of crystalline silicon[J]. AIP Advances, 2015, 5(6): 067168. doi:  10.1063/1.4923379 
						
					 | 
			
| [20] | 
					 CHEN F. The enhancement of the APD for Blu-Ray detection in VLC[D]. Changchun: Changchun University of Science and Technology, 2018. (in Chinese) 
						
					 | 
			
| [21] | 
					 WANG H B. Research on enhancement in blue-light properties of silicon based avalanche photodiode[D]. Beijing: University of Chinese Academy of Sciences (Changchun Institute of Optics, Precision Machinery and Physics, Chinese Academy of Sciences), 2020. (in Chinese) 
						
					 | 
			
| [22] | 
					 SHI Y L, ZHU H X, YANG X Y, et al. InP-based free running mode single photon avalanche photodiode[J]. Infrared and Laser Engineering, 2020, 49(1): 0103005. (in Chinese) 
						
					 | 
			
| [23] | 
					 LIU E K, ZHU D SH, LUO J SH. Physics of Semiconductors[M]. 7th ed. Beijing: Publishing House of Electronics Industry, 2017: 66-67. (in Chinese) 
						
					 | 
			
| [24] | 
					 CHYNOWETH A G. Chapter 4 charge multiplication phenomena[J]. Semiconductors and Semimetals, 1968, 4: 263-325. 
						
					 | 
			
| [25] | 
					 YANG M. The research of silicon avalanche photodiode single photon detector on space quantum communication[D]. Hefei: University of Science and Technology of China, 2019. (in Chinese) 
						
					 | 
			
| [26] | 
					 LI Y. Theoretical and experimental study on avalanche photodiodes and optimization design[D]. Wuhan: Huazhong University of Science and Technology, 2017. (in Chinese) 
						
					 | 
			
| [27] | 
					 SZE S M, NG K K. Physics of Semiconductor Devices[M]. GENG L, ZHANG R ZH, trans. 3rd ed. Xi'an: Xi'an Jiaotong University Press, 2008. (in Chinese) 
						
					 | 
			
| [28] | 
					 WOODS M H, JOHNSON W C, LAMPERT M A. Use of a Schottky barrier to measure impact ionization coefficients in semiconductors[J]. Solid-State Electronics, 1973, 16(3): 381-394. doi:  10.1016/0038-1101(73)90013-0 
						
					 | 
			
| [29] | 
					 FOSSUM J G, MERTENS R P, LEE D S, et al. Carrier recombination and lifetime in highly doped silicon[J]. Solid-State Electronics, 1983, 26(6): 569-576. doi:  10.1016/0038-1101(83)90173-9 
						
					 | 
			
| [30] | 
					 OLDHAM W G, SAMUELSON R R, ANTOGNETTI P. Triggering phenomena in avalanche diodes[J]. IEEE Transactions on Electron Devices, 1972, 19(9): 1056-1060. doi:  10.1109/T-ED.1972.17544 
						
					 | 
			
| [31] | 
					 GAO D, ZHANG J, WANG F, et al. Design and simulation of ultra-thin and high-efficiency silicon-based trichromatic PIN photodiode arrays for visible light communication[J]. Optics Communications, 2020, 475: 126296. doi:  10.1016/j.optcom.2020.126296 
						
					 | 
			
| [32] | 
					 VAN OVERSTRAETEN R, DE MAN H. Measurement of the ionization rates in diffused silicon p-n junctions[J]. Solid-State Electronics, 1970, 13(5): 583-608. doi:  10.1016/0038-1101(70)90139-5 
						
					 | 
			
| [33] | 
					 SELBERHERR S. Analysis and Simulation of Semiconductor Devices[M]. Vienna: Springer, 1984. 
						
					 | 
			
| [34] | 
					 HALL R N. Electron-hole recombination in germanium[J]. Physical Review, 1952, 87(2): 387. 
						
					 | 
			
| [35] | 
					 SHOCKLEY W, READ JR W T. Statistics of the recombinations of holes and electrons[J]. Physical Review, 1952, 87(5): 835-842. doi:  10.1103/PhysRev.87.835 
						
					 | 
			
| [36] | 
					 ARORA N D, HAUSER J R, ROULSTON D J. Electron and hole mobilities in silicon as a function of concentration and temperature[J]. IEEE Transactions on Electron Devices, 1982, 29(2): 292-295. doi:  10.1109/T-ED.1982.20698 
						
					 | 
			
| [37] | 
					 CAUGHEY D M, THOMAS R E. Carrier mobilities in silicon empirically related to doping and field[J]. Proceedings of the IEEE, 1967, 55(12): 2192-2193. doi:  10.1109/PROC.1967.6123 
						
					 | 
			
| [38] | 
					 MASETTI G, SEVERI M, SOLMI S. Modeling of carrier mobility against carrier concentration in arsenic-, phosphorus-, and boron-doped silicon[J]. IEEE Transactions on Electron Devices, 1983, 30(7): 764-769. doi:  10.1109/T-ED.1983.21207 
						
					 | 
			
| [39] | 
					 FORREST S. Performance of InxGa1-xAsyP1-yphotodiodes with dark current limited by diffusion, generation recombination, and tunneling[J]. IEEE Journal of Quantum Electronics, 1981, 17(2): 217-226. doi:  10.1109/JQE.1981.1071060 
						
					 | 
			
| [40] | 
					 GU H Q. The study of avalanche gain and structural parameter optimization in Si based micro-pixel APD[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese) 
						
					 |