Volume 15 Issue 3
May  2022
Turn off MathJax
Article Contents
ZHANG Tian-yu, WANG Gang, ZHANG Xi, DOU Jiang-pei. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. doi: 10.37188/CO.2021-0182
Citation: ZHANG Tian-yu, WANG Gang, ZHANG Xi, DOU Jiang-pei. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. doi: 10.37188/CO.2021-0182

Staticaberration correction technique for adaptive optics system based on focal-plane copy approach

doi: 10.37188/CO.2021-0182
Funds:  Supported by the National Natural Science Foundation of China (No. 11827804, No. U2031210, No. 11673042); Special Scientific Research Funds for China′s Manned Space Project Sky Survey Space Telescope (No. CMS-CSST-2021-A11);Key foreign cooperation projects, the Chinese Academy of Sciences (No. 114A32KYSB20160057); The Strategic Priority Research Program (category A) of the Chinese Academy of Sciences (No. XDA15010300)
More Information
  • Corresponding author: gwang@niaot.ac.cn
  • Received Date: 27 Oct 2021
  • Rev Recd Date: 17 Nov 2021
  • Accepted Date: 21 Jan 2022
  • Available Online: 27 Jan 2022
  • Publish Date: 20 May 2022
  • A key factor limiting the performance of Adaptive Optics (AO) systems is the Non-Common Path Aberration (NCPA) caused by the difference between the wavefront sensor path and the science imaging path. Meanwhile, a static aberration will inevitably be introduced in the common path of the AO system. This paper proposes a correction technology based on a copy of the focal-plane Point Spread Function (PSF) to correct static aberration in the scientific imaging path of AO systems. This technology uses the PSF generated by the laser point light source as the reference PSF, and copies that to the science imaging path of the AO system through iterative optimization algorithms. Experimental results show that the Strehl Ratio (SR) increases from the initial 0.312 to 0.995 after correction. This technology can still stably and quickly obtain global optimization results, especially when the initial static aberration of the system is large.

     

  • loading
  • [1]
    ZHU Y T, DOU J P, ZHANG X, et al. Portable adaptive optics for exoplanet imaging[J]. Research in Astronomy and Astrophysics, 2021, 21(4): 082. doi: 10.1088/1674-4527/21/4/82
    [2]
    KHORRAMI Z, LANGLOIS M, VAKILI F, et al. Extreme adaptive optics astrometry of R136[J]. Astronomy &Astrophysics, 2021, 649: L8.
    [3]
    SAHU P, MAZUMDER N. Improving the way we see: adaptive optics based optical microscopy for deep-tissue imaging[J]. Frontiers in Physics, 2021, 9: 654868. doi: 10.3389/fphy.2021.654868
    [4]
    郑贤良, 刘瑞雪, 夏明亮, 等. 液晶自适应光学视网膜校正成像技术研究[J]. 中国光学,2014,7(1):98-104.

    ZHENG X L, LIU R X, XIA M L, et al. Retinal correction imaging system based on liquid crystal adaptive optics[J]. Chinese Optics, 2014, 7(1): 98-104. (in Chinese)
    [5]
    CHEN Y W, HE Y, WANG J, et al. Automated cone cell identification on adaptive optics scanning laser ophthalmoscope images based on TV-L1 optical flow registration and K-means clustering[J]. Applied Sciences, 2021, 11(5): 2259. doi: 10.3390/app11052259
    [6]
    刘立新, 张美玲, 吴兆青, 等. 自适应光学在荧光显微镜中的应用[J]. 激光与光电子学进展,2020,57(12):120001.

    LIU L X, ZHANG M L, WU ZH Q, et al. Application of adaptive optics in fluorescence microscope[J]. Laser &Optoelectronics Progress, 2020, 57(12): 120001. (in Chinese)
    [7]
    MILLER D T, KUROKAWA K. Cellular-scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography[J]. Annual Review of Vision Science, 2020, 6: 115-148. doi: 10.1146/annurev-vision-030320-041255
    [8]
    朱沁雨, 韩国庆, 彭建涛, 等. 双波长视网膜成像自适应光学系统的轴向色差补偿方法[J]. 中国光学,2022,15(1):79-89. doi: 10.37188/CO.EN.2021-0009

    ZHU Q Y, HAN G Q, PENG J T, et al. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J]. Chinese Optics, 2022, 15(1): 79-89. (in Chinese) doi: 10.37188/CO.EN.2021-0009
    [9]
    潘国涛, 闫钰锋, 于信, 等. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317. doi: 10.37188/CO.2021-0130

    PAN G T, YAN Y F, YU X, et al. Design of optical system for quality evaluation of large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. (in Chinese) doi: 10.37188/CO.2021-0130
    [10]
    ANGEL J R P. Ground-based imaging of extrasolar planets using adaptive optics[J]. Nature, 1994, 368(6468): 203-207. doi: 10.1038/368203a0
    [11]
    FUSCO T, SAUVAGE J F, PETIT C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proceedings of SPIE, 2014, 9148: 91481U.
    [12]
    POYNEER L A, PALMER D W, MACINTOSH B, et al. Performance of the Gemini Planet Imager's adaptive optics system[J]. Applied Optics, 2016, 55(2): 323-340. doi: 10.1364/AO.55.000323
    [13]
    HIPPLER S. Adaptive optics for extremely large telescopes[J]. Journal of Astronomical Instrumentation, 2019, 8(2): 1950001. doi: 10.1142/S2251171719500016
    [14]
    BAUDOZ P, MAS M, GALICHER R, et al. Focal plane wavefront sensor sensitivity for ELT planet finder[J]. Proceedings of SPIE, 2010, 7736: 77365S. doi: 10.1117/12.858272
    [15]
    王亮, 陈涛, 刘欣悦, 等. 适用于波前处理器的自适应光学系统非共光路像差补偿方法[J]. 光子学报,2015,44(5):0511001. doi: 10.3788/gzxb20154405.0511001

    WANG L, CHEN T, LIU X Y, et al. Compensation of the non-common path aberrations in an adaptive optics system with a wavefront processor[J]. Acta Photonica Sinica, 2015, 44(5): 0511001. (in Chinese) doi: 10.3788/gzxb20154405.0511001
    [16]
    REN D Q, DONG B, ZHU Y T, et al. Correction of non-common-path error for extreme adaptive optics[J]. Publications of the Astronomical Society of the Pacific, 2012, 124(913): 247-253. doi: 10.1086/664947
    [17]
    REN D Q, ZHANG T Y, WANG G. A low-cost and high-performance technique for adaptive optics static wavefront correction[J]. Research in Astronomy and Astrophysics, 2021, 21(7): 181. doi: 10.1088/1674-4527/21/7/181
    [18]
    VORONTSOV M A, CARHART G W, RICKLIN J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
    [19]
    VORONTSOV M A, SIVOKON V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi: 10.1364/JOSAA.15.002745
    [20]
    VORONTSOV M A, YU M. Compensation of distant phase-distorting layers. II. Extended-field-of-view adaptive receiver system[J]. Journal of the Optical Society of America A, 2004, 21(9): 1659-1668. doi: 10.1364/JOSAA.21.001659
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article views(1116) PDF downloads(223) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return