Turn off MathJax
Article Contents
WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, Fei Chen, ZHENG Chang-bin. Study on the damage characteristics of 532 nm picosecond pulse laser to monocrystalline silicon[J]. Chinese Optics. doi: 10.37188/CO.2021-0160
Citation: WANG Jia-min, JI Yan-hui, LIANG Zhi-yong, Fei Chen, ZHENG Chang-bin. Study on the damage characteristics of 532 nm picosecond pulse laser to monocrystalline silicon[J]. Chinese Optics. doi: 10.37188/CO.2021-0160

Study on the damage characteristics of 532 nm picosecond pulse laser to monocrystalline silicon

doi: 10.37188/CO.2021-0160
More Information
  • With the development of optoelectronic countermeasures and ultrashort pulse laser technology, the study of the interaction between ultrashort pulse laser and monocrystalline silicon has very important theoretical and practical significance. However, there are few reports about the damage effect of 532 nm picosecond pulse laser on monocrystalline silicon. Therefore, in order to further clarify the damage mechanism of 532 nm picosecond pulsed laser to monocrystalline silicon, we have carried out an experimental study to measure the damage threshold, clarify the damage mechanism, and discuss the pulse accumulation effect at low flux. Firstly, using a laser with a wavelength of 532 nm, a pulse width of 30 ps and a metallurgical microscope, based on the 1-on-1 laser damage test method, the zero damage probability threshold is determined to be 0.52 J/cm2.Secondly, the damage effect of picosecond laser irradiated monocrystalline silicon was studied under different laser flux, and it was found that the damage of 532 nm picosecond laser to monocrystalline silicon is manifested as heated-effect damage and plasma impact damage. The increase of energy density can be divided into three stages according to the main damage mechanism: thermal effect (0.52~3 J/cm2), thermal ablation (3~50 J/cm2) and plasma effect (>50 J/cm2), and the damage areas are corresponded to different growth laws with the laser energy density, respectively. Finally, an experiment of multi-pulse cumulative effect was carried out at low laser flux, and it was found that at a laser energy density of 0.52 J/cm2, the surface was irradiated continuously for 16 shots.The formation of a heat-affected zone confirms that the cumulative effect of multiple pulses can lower the laser damage threshold of monocrystalline silicon.
  • loading
  • [1]
    XIE CH, MEYER R, FROEHLY L, et al. In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging[J]. Light:Science &Applications, 2021, 10(1): 126.
    JIANG L, WANG A D, LI B, et al. Electrons dynamics control by shaping femtosecond laser pulses in micro/nanofabrication: modeling, method, measurement and application[J]. Light:Science &Applications, 2018, 7(2): 17134.
    MALINAUSKAS M, ŽUKAUSKAS A, HASEGAWA S, et al. Ultrafast laser processing of materials: from science to industry[J]. Light:Science &Applications, 2016, 5(8): e16133.
    LIU Y, LIU L SH, TANG W, et al. Experimental study on the damage of optical materials by out of band composite laser[J]. Applied Sciences, 2020, 10(10): 3578. doi: 10.3390/app10103578
    FINGER J, BORNSCHLEGEL B, REININGHAUS M, et al. Heat input and accumulation for ultrashort pulse processing with high average power[J]. Advanced Optical Technologies, 2018, 7(3): 145-155. doi: 10.1515/aot-2018-0008
    CHICHKOV B N, MOMMA C, NOLTE S, et al. Femtosecond, picosecond and nanosecond laser ablation of solids[J]. Applied Physics A, 1996, 63(2): 109-115. doi: 10.1007/BF01567637
    MERKLE L D, BASS M, SWIMM R T. Erratum: multiple pulse laser-induced bulk damage in crystalline and fused quartz at 1.064 and 0.532 õm[J]. Optical Engineering, 1986, 25(1): 251196. doi: 10.1117/12.7973801
    MEYER J R, KRUER M R, BARTOLI F J. Optical heating in semiconductors: laser damage in Ge, Si, InSb, and GaAs[J]. Journal of Applied Physics, 1980, 51(10): 5513-5522. doi: 10.1063/1.327469
    RUBLACK T, HARTNAUER S, MERGNER M, et al. Mechanism of selective removal of transparent layers on semiconductors using ultrashort laser pulses[J]. Proceedings of SPIE, 2012, 8247: 82470Z. doi: 10.1117/12.905741
    SMIRNOV N A, KUDRYASHOV S I, RUDENKO A A, et al. Pulsewidth and ambient medium effects during ultrashort-pulse laser ablation of silicon in air and water[J]. Applied Surface Science, 2021, 562: 150243. doi: 10.1016/j.apsusc.2021.150243
    张明鑫, 李志明, 聂劲松, 等. 多脉冲飞秒激光烧蚀硅的热累积效应[J]. 光电子技术,2018,38(4):224-230.

    ZHANG M X, LI ZH M, NIE J S, et al. Heat accumulation effect of multipulse femtosecond laser ablation of silicon[J]. Optoelectronic Technology, 2018, 38(4): 224-230. (in Chinese)
    WANG X, SHEN ZH H, LU J, et al. Laser-induced damage threshold of silicon in millisecond, nanosecond, and picosecond regimes[J]. Journal of Applied Physics, 2010, 108(3): 033103. doi: 10.1063/1.3466996
    VAN WOERKOM T A, PERRAM G P, DOLASINSKI B D, et al. Picosecond laser ablation of metals and semiconductors with low-transverse order Gaussian beams[J]. Optical Engineering, 2020, 60(3): 031002.
    SHAHEEN M E, GAGNON J E, FRYER B J. Studies on laser ablation of silicon using near IR picosecond and deep UV nanosecond lasers[J]. Optics and Lasers in Engineering, 2019, 119: 18-25. doi: 10.1016/j.optlaseng.2019.02.003
    THORSTENSEN J, FOSS S E. Investigation of depth of laser damage to silicon as function of wavelength and pulse duration[J]. Energy Procedia, 2013, 38: 794-800. doi: 10.1016/j.egypro.2013.07.348
    郑长彬, 邵俊峰, 李雪雷, 等. 飞秒脉冲激光对硅基多层膜损伤特性[J]. 中国光学,2019,12(2):371-381. doi: 10.3788/co.20191202.0371

    ZHENG CH B, SHAO J F, LI X L, et al. Femtosecond pulsed laser induced damage characteristics on Si-based multi-layer film[J]. Chinese Optics, 2019, 12(2): 371-381. (in Chinese) doi: 10.3788/co.20191202.0371
    邵俊峰, 郭劲, 王挺峰. 飞秒激光与硅的相互作用过程理论研究[J]. 红外与激光工程,2014,43(8):2419-2424. doi: 10.3969/j.issn.1007-2276.2014.08.005

    SHAO J F, GUO J, WANG T F. Theoretical research on dynamics of femto-second laser ablation crystal silicon[J]. Infrared and Laser Engineering, 2014, 43(8): 2419-2424. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.08.005
    MCDONALD J P, MISTRY V R, RAY K E, et al. Femtosecond pulsed laser direct write production of nano- and microfluidic channels[J]. Applied Physics Letters, 2006, 88(18): 183113. doi: 10.1063/1.2201620
    BENOCCI R, BATANI D, ROMAN H E. Incubation models for under-threshold laser ablation with thermal dissipation[J]. Applied Physics B, 2019, 125(2): 22. doi: 10.1007/s00340-019-7132-0
    KÜPER S, STUKE M. UV-excimer-laser ablation of polymethylmethacrylate at 248 nm: characterization of incubation sites with Fourier transform IR- and UV-spectroscopy[J]. Applied Physics A, 1989, 49(2): 211-215. doi: 10.1007/BF00616301
    KÜPER S, STUKE M. Femtosecond UV excimer laser ablation[J]. Applied Physics B, 1987, 44(4): 199-204. doi: 10.1007/BF00692122
    VAN DER LINDEN S, HAGMEIJER R, RÖMER G R B E. Picosecond pulsed underwater laser ablation of silicon and stainless steel: comparing crater analysis methods and analysing dependence of crater characteristics on water layer thickness[J]. Applied Surface Science, 2021, 540: 148005. doi: 10.1016/j.apsusc.2020.148005
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views (84) PDF downloads(11) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint