Turn off MathJax
Article Contents
CHE Dong-bo, WANG Ting-feng, ZHANG Shao, HAN Yue, YI Yuan-yang. Statistical characteristics of multi-channel cooperative dynamic speckle metric[J]. Chinese Optics. doi: 10.37188/CO.2021-0152
Citation: CHE Dong-bo, WANG Ting-feng, ZHANG Shao, HAN Yue, YI Yuan-yang. Statistical characteristics of multi-channel cooperative dynamic speckle metric[J]. Chinese Optics. doi: 10.37188/CO.2021-0152

Statistical characteristics of multi-channel cooperative dynamic speckle metric

doi: 10.37188/CO.2021-0152
Funds:  Supported by National Natural Science Foundation of China (No. 61805234); Key Research Program of Frontier Science, China, CAS (No. QYZDB-SSWSLH014)
  • Accepted Date: 2021-11-03
  • Available Online: 2021-11-03
  • To improve the accuracy and efficiency of dynamic speckle metric for nondestructive detecting the far-field target hit-spot intensity in target-in-the-loop (TIL) system, a multi-channel cooperative detection system for acquiring speckle signals is established. And the theory of dynamic speckles, the simulation model of this system and the spatial-temporal spectral fusion characteristics are investigated. As a first step, the power spectrum is obtained by filtering, auto-correlating and Fourier transforming the intensity fluctuations of dynamic speckle detected by the point detector. Then, the feasibility of speckle-metric, obtained by multiplying the spectrum with weights, is explored to monitor the target-focused spot. As a second step, the approach of splicing the temporal signals obtained from different spatial locations on the receiving plane is proposed. Moreover, the prerequisites of this approach are listed. Finally, the effectiveness of the proposed speckle metric obtained by fusing spectrum is verified through simulations and experiments. The results show that speckle metric decreases with the increase of the hit-spot size, and four-channel space-averaging metric can improve the accuracy by 2 times when each group of signals is uncorrelated. Besides, the metric obtained by spatial-temporal fusion spectrum not only guarantees accuracy but also increases the system bandwidth by 4 times. Therefore, the multi-channel cooperative acquisition of speckle metric can monitor the hit-spot change of far-field moving target more rapidly.
  • loading
  • [1]
    Stoykova E, Kang H, Kim Y, et al. Evaluation of activity from binary patterns in dynamic speckle analysis[J]. Optics and Lasers in Engineering, 2018, 111: 50-57. doi: 10.1016/j.optlaseng.2018.07.020
    Zhang Y, Ceylan Koydemir H, Shimogawa M M, et al. Motility-based label-free detection of parasites in bodily fluids using holographic speckle analysis and deep learning[J]. Light: Science & Applications, 2018, 7(1).
    Wan Y, Fan X, Wang S, et al. Wavemeter capable of simultaneously achieving ultra-high resolution and broad bandwidth by using Rayleigh speckle from single mode fiber[J]. Journal of Lightwave Technology, 2021, 39(7): 2223-2229. doi: 10.1109/JLT.2020.3046022
    Mendoza-Herrera L J, Schinca D C, Scaffardi L B, et al. Measurement of latex microparticle size by dynamic speckle technique[J]. Optics and Lasers in Engineering, 2021, 140: 106528. doi: 10.1016/j.optlaseng.2020.106528
    胡慧然, 但西佐, 赵琪涵, 等. 数字图像相关中的散斑区域自动提取研究[J]. 中国光学,2019,12(6):1329-1337. doi: 10.3788/co.20191206.1329

    Hu H R, Dan X Z, Zhao Q H. et al. Automatic extraction of speckle area in digital image correlation[J]. Chinese Optics, 2019, 12(6): 1329-1337. (in Chinese) doi: 10.3788/co.20191206.1329
    Salter P S, Booth M J. Adaptive optics in laser processing[J]. Light: Science & Applications, 2019, 8(1).
    Piatrou P, Roggemann M. Beaconless stochastic parallel gradient descent laser beam control: numerical experiments[J]. Applied optics, 2007, 46(27): 6831-6842. doi: 10.1364/AO.46.006831
    Che D, Li Y, Wu Y, et al. Theory of AdmSPGD algorithm in fiber laser coherent synthesis[J]. Optics Communications, 2021, 492: 126953. doi: 10.1016/j.optcom.2021.126953
    Wan Y, Wang S, Fan X, et al. High-resolution wavemeter using Rayleigh speckle obtained by optical time domain reflectometry[J]. Optics letters, 2020, 45(4): 799-802. doi: 10.1364/OL.384248
    Budini, Nicolas, Balducci N, Mulone C, et al. Extraction of dynamic speckle activity information from digital holograms[J]. Optical Engineering, 2016, 55.12: 121716.
    Davila A, Rayas J A. Single-shot phase detection in a speckle wavemeter for the measurement of femtometric wavelength change[J]. Optics and Lasers in Engineering, 2020, 125(Feb.): 105856.1-105856.5.
    Kulkarni R, Pal P, Banoth E. Spatio-temporal analysis of dynamic speckle patterns using singular value decomposition[J]. Optics and Lasers in Engineering, 2021, 142: 106588. doi: 10.1016/j.optlaseng.2021.106588
    邵珩, 周勇, 祁俊峰, 等. GPU加速电子剪切散斑干涉图像处理[J]. 液晶与显示,2019,34(10):1021-1029. doi: 10.3788/YJYXS20193410.1021

    Shao H, Zhou Y, Qi J F. et al. GPU accelerated image processing for electronic speckle pattern shearing interferometry[J]. Chinese Journal of Liquid Crystals and Displays., 2019, 34(10): 1021-1029. (in Chinese) doi: 10.3788/YJYXS20193410.1021
    Sawatari T, Elek A C. Image plane detection using laser speckle patterns[J]. Applied optics, 1973, 12(4): 881-883. doi: 10.1364/AO.12.000881
    阳志强, 吴振森, 张耿. 旋转圆锥目标动态散斑的时间相关函数[J]. 光学学报,2013,33(10):1029001. doi: 10.3788/AOS201333.1029001

    Yang Z Q, Wu Z S, Zhang Q, et al. Time correlation function of dynamic speckle of rotating cone target[J]. Acta Optica Sinica, 2013, 33(10): 1029001. (in Chinese) doi: 10.3788/AOS201333.1029001
    Xu X, Ren X, Zhong F, et al. Optimization of speckle pattern based on integer programming method[J]. Optics and Lasers in Engineering, 2020, 133: 106100. doi: 10.1016/j.optlaseng.2020.106100
    Skipetrov S E, Peuser J, Cerbino R, et al. Noise in laser speckle correlation and imaging techniques[J]. Optics express, 2010, 18(14): 14519-14534. doi: 10.1364/OE.18.014519
    Stoykova E, Berberova N, Kim Y, et al. Dynamic speckle analysis with smoothed intensity-based activity maps[J]. Optics &Lasers in Engineering, 2017, 93: 55-65.
    Semenov D V, Miridonov S V, Nippolainen E, et al. Statistical properties of dynamic speckles formed by a deflecting laser beam[J]. Optics express, 2008, 16(2): 1238-1249. doi: 10.1364/OE.16.001238
    Miridonov S V, Sidorov I, Nippolainen E, et al. Accuracy of measuring systems using dynamic speckles[J]. JOSA A, 2009, 26(4): 745-753. doi: 10.1364/JOSAA.26.000745
    Vorontsov M A, Kolosov V V, Polnau E. Target-in-the-loop wavefront sensing and control with a Collett-Wolf beacon: speckle-average phase conjugation[J]. Applied optics, 2009, 48(1): A13-A29. doi: 10.1364/AO.48.000A13
    Vorontsov M, Weyrauch T, Lachinova S, et al. Speckle-metric-optimization-based adaptive optics for laser beam projection and coherent beam combining[J]. Optics letters, 2012, 37(14): 2802-2804. doi: 10.1364/OL.37.002802
    Yin W, Zhong J, Feng S, et al. Composite deep learning framework for absolute 3D shape measurement based on single fringe phase retrieval and speckle correlation[J]. Journal of Physics Photonics, 2020, 2: 45009. doi: 10.1088/2515-7647/abbcd9
    张亚超, 刘鹏, 王晓光, 等. X射线散射法测量Wolter-I型掠入射望远镜的表面粗糙度[J]. 中国光学,2019,12(003):587-595. doi: 10.3788/co.20191203.0587

    Zhang Y C, Liu P, Wang X G. et al. Characterizing curved surface roughness of Wolter-ⅠX-ray grazing incidence telescope[J]. Chinese Optics, 2019, 12(003): 587-595. (in Chinese) doi: 10.3788/co.20191203.0587
    Rytov S M, Kravtsov Y A, Tatarskii V I. Principles of statistical radiophysics. 4. Wave propagation through random media[M]. 1989.
    Vorontsov M A. Speckle effects in target-in-the-loop laser beam projection systems[J]. Advanced Optical Technologies, 2013, 2(5-6): 369-395.
    Yu, Z. , Guo, J., Liu, L., Wang, et al. Statistical properties of dynamic speckles in application to laser focusing systems[J]. Applied Optics, 2019, 58(12): 3310-3316. doi: 10.1364/AO.58.003310
    Dainty J C, Ennos A E, Françon M, et al. Laser Speckle and Related Phenomena[J]. Optica Acta International Journal of Optics, 1976, 23(10): 842-843.
    Rabal H J, Arizaga R, Cap N L, et al. Numerical model for dynamic speckle: an approach using the movement of the scatterers[J]. Journal of Optics A:Pure and Applied Optics, 2003, 5(5): S381. doi: 10.1088/1464-4258/5/5/396
    钱伟, 蒋明. 数字图像相关方法中数字散斑场的制作与应用研究[J]. 液晶与显示,2020(8):861-869. doi: 10.37188/YJYXS20203508.0861

    Qian W, Jiang M. Design and application of digital speckle patterns in digital image correlation method[J]. Chinese Journal of Liquid Crystals and Displays, 2020(8): 861-869. (in Chinese) doi: 10.37188/YJYXS20203508.0861
    S. A. Akhmanov, Y. E. D’yakov and A. S. Chirkin, Introduction to Statistical Radiophisics and Optics[M]. 1981
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(1)

    Article views (69) PDF downloads(6) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint