Volume 15 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
WU Chang-kun, ZHANG Wei, HAO Ya-zhe. Design of a control system for a visible/near-infrared real-time imaging spectrometer[J]. Chinese Optics, 2022, 15(2): 348-354. doi: 10.37188/CO.2021-0119
Citation: WU Chang-kun, ZHANG Wei, HAO Ya-zhe. Design of a control system for a visible/near-infrared real-time imaging spectrometer[J]. Chinese Optics, 2022, 15(2): 348-354. doi: 10.37188/CO.2021-0119

Design of a control system for a visible/near-infrared real-time imaging spectrometer

doi: 10.37188/CO.2021-0119
Funds:  Supported by the Key Laboratory of Optoelectronic Information Control and Security Technology (No. JCKY2019210C053); Tianjin University Open Research Foundation of Institute of Integrated Circuits and Artificial Intelligence in Quanzhou
More Information
  • Corresponding author: tjuwuck@tju.edu.cn
  • Received Date: 04 Jun 2021
  • Rev Recd Date: 13 Jul 2021
  • Available Online: 16 Aug 2021
  • Publish Date: 21 Mar 2022
  • A visible/near-infrared real-time imaging spectrometer is designed for hyperspectral imaging on the basis of an Acousto-Optic Tunable Filter (AOTF). Its operating band range is 1.3 μm, in which the visible light camera works in the 400−1000 nm band and the near-infrared camera works in 1000−1700 nm band. A Field-Programmable Gate Array (FPGA) is used as the core processing unit of the spectrometer control system. The Cameralink interface is used to collect camera data, the AOTF frequency is controlled by the serial port. Through the combination of AOTF synchronization signal and the trigger signal outside the camera, the one-to-one correspondence between a continuous image and multi-wavelength cyclic acquisition is realized. Finally, the image data is transmitted to the upper computer through the USB3.0 interface for real-time display. The field test shows that the imaging quality of the spectrometer is good and the system works stably. For images with a 1024×1024 resolution, the real-time transmission rate of the image can reach up to 120 frame/s, which meets the design requirements. In practical engineering applications, the control system has a rich interface, high reliability, flexible interface and strong expansibility.

     

  • loading
  • [1]
    常凌颖, 赵葆常, 邱跃洪, 等. 声光可调谐滤波器成像光谱仪光学系统设计[J]. 光学学报,2010,30(10):3021-3026. doi: 10.3788/AOS20103010.3021

    CHANG L Y, ZHAO B CH, QIU Y H, et al. Optical design of imaging Spectrometer based on acousto-optic tunable filter[J]. Acta Optica Sinica, 2010, 30(10): 3021-3026. (in Chinese) doi: 10.3788/AOS20103010.3021
    [2]
    赵慧洁, 程宣, 张颖. 用于火星探测的声光可调谐滤波器成像光谱仪[J]. 光学 精密工程,2012,20(9):1945-1952. doi: 10.3788/OPE.20122009.1945

    ZHAO H J, CHENG X, ZHANG Y. Design of acousto-optic imaging spectrometer for mars exploration[J]. Optics and Precision Engineering, 2012, 20(9): 1945-1952. (in Chinese) doi: 10.3788/OPE.20122009.1945
    [3]
    赵慧洁, 宋汪洋, 张颖, 等. 声光可调谐滤波器成像光谱仪实时预处理系统[J]. 中国光学,2013,6(4):577-583.

    ZHAO H J, SONG W Y, ZHANG Y, et al. Real-time pre-processing system of AOTF imaging spectrometer[J]. Chinese Optics, 2013, 6(4): 577-583. (in Chinese)
    [4]
    曹佃生, 石振华, 林冠宇. 机载海洋改进型Dyson高光谱成像仪的研制[J]. 光学 精密工程,2017,25(6):1403-1409. doi: 10.3788/OPE.20172506.1403

    CAO D SH, SHI ZH H, LIN G Y. Development of airborne ocean modified Dyson hyperspectral imager[J]. Optics and Precision Engineering, 2017, 25(6): 1403-1409. (in Chinese) doi: 10.3788/OPE.20172506.1403
    [5]
    张佳伦, 郑玉权, 蔺超, 等. 消像散的自由曲面棱镜光谱仪光学系统设计[J]. 中国光学,2020,13(4):842-851. doi: 10.37188/CO.2019-0049

    ZHANG J L, ZHENG Y Q, LIN C, et al. Design of a freeform curved prism imaging spectrometer based on an anastigmatism[J]. Chinese Optics, 2020, 13(4): 842-851. (in Chinese) doi: 10.37188/CO.2019-0049
    [6]
    樊星皓, 刘春雨, 金光, 等. 轻小型高分辨率星载高光谱成像光谱仪[J]. 光学 精密工程,2021,29(3):463-473. doi: 10.37188/OPE.20212903.0463

    FAN X H, LIU CH Y, JIN G, et al. Small and high-resolution spaceborne hyperspectral imaging spectrometer[J]. Optics and Precision Engineering, 2021, 29(3): 463-473. (in Chinese) doi: 10.37188/OPE.20212903.0463
    [7]
    罗刚银, 王弼陡, 陈玉琦, 等. 可见近红外波段无人机载成像光谱仪设计[J]. 光子学报,2017,46(9):930001. doi: 10.3788/gzxb20174609.0930001

    LUO G Y, WANG B D, CHEN Y Q, et al. Design of visible near infrared imaging spectrometer on unmanned aerial vehicle[J]. Acta Photonica Sinica, 2017, 46(9): 930001. (in Chinese) doi: 10.3788/gzxb20174609.0930001
    [8]
    刘世界, 李春来, 徐睿, 等. 电子式多狭缝组合编码高光谱成像系统[J]. 光学学报,2020,40(1):0111026. doi: 10.3788/AOS202040.0111026

    LIU SH J, LI CH L, XU R, et al. Hyperspectral imaging system using electronic multi-slot combination coding[J]. Acta Optica Sinica, 2020, 40(1): 0111026. (in Chinese) doi: 10.3788/AOS202040.0111026
    [9]
    刘济帆, 马艳华, 张雷, 等. 基于AOTF的新型成像光谱系统[J]. 红外与激光工程,2013,42(11):3065-3069. doi: 10.3969/j.issn.1007-2276.2013.11.035

    LIU J F, MA Y H, ZHANG L, et al. New hyperspectral imaging system based on AOTF[J]. Infrared and Laser Engineering, 2013, 42(11): 3065-3069. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.11.035
    [10]
    NAG S, HEWAGAMA T, GEORGIEV G T, et al. Multispectral snapshot imagers onboard small satellite formations for multi-angular remote sensing[J]. IEEE Sensors Journal, 2017, 17(16): 5252-5268. doi: 10.1109/JSEN.2017.2717384
    [11]
    张瑞, 陈友华, 李世伟, 等. 基于双AOTF的新型成像光谱偏振探测系统[J]. 光谱学与光谱分析,2016,36(5):1549-1553.

    ZHANG R, CHEN Y H, LI SH W, et al. The research of spectral polarization imaging detection system based dual-AOTFs[J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1549-1553. (in Chinese)
    [12]
    姜庆辉, 邱跃洪, 文延, 等. AOTF偏振光谱成像数据采集系统设计[J]. 红外与激光工程,2012,41(1):218-222. doi: 10.3969/j.issn.1007-2276.2012.01.042

    JIANG Q H, QIU Y H, WEN Y, et al. Design of data acquisition system for AOTF polarization spectral imaging instrument[J]. Infrared and Laser Engineering, 2012, 41(1): 218-222. (in Chinese) doi: 10.3969/j.issn.1007-2276.2012.01.042
    [13]
    陈明惠, 贾文宇, 何锦涛, 等. 双重滤波扫频光源的研制[J]. 光学 精密工程,2018,26(10):2355-2362. doi: 10.3788/OPE.20182610.2355

    CHEN M H, JIA W Y, HE J T, et al. Development of swept source based on dual filtering[J]. Optics and Precision Engineering, 2018, 26(10): 2355-2362. (in Chinese) doi: 10.3788/OPE.20182610.2355
    [14]
    成桂梅, 刘涛, 荣鹏, 等. 多探测器数据控制与处理系统设计[J]. 红外与激光工程,2016,45(4):0420002. doi: 10.3788/irla201645.0420002

    CHENG G M, LIU T, RONG P, et al. Design of multi-detector data control and processing system[J]. Infrared and Laser Engineering, 2016, 45(4): 0420002. (in Chinese) doi: 10.3788/irla201645.0420002
    [15]
    王跃明, 韦丽清, 郎均慰, 等. 先进焦平面与光谱成像技术现状[J]. 光学与光电技术,2014,12(1):7-13. doi: 10.3969/j.issn.1672-3392.2014.01.002

    WANG Y M, WEI L Q, LANG J W, et al. Status of advanced focal plane arrays and spectral imaging technology[J]. Optics &Optoelectronic Technology, 2014, 12(1): 7-13. (in Chinese) doi: 10.3969/j.issn.1672-3392.2014.01.002
    [16]
    SHARMA A M, DOGRA A, GOYAL B, et al. From pyramids to state-of-the-art: a study and comprehensive comparison of visible-infrared image fusion techniques[J]. IET Image Processing, 2020, 14(9): 1671-1689. doi: 10.1049/iet-ipr.2019.0322
    [17]
    杨福臻, 陈新华, 赵知诚, 等. 面向小行星探测的可见-红外光谱成像光学系统[J]. 光学学报,2020,40(7):0722002. doi: 10.3788/AOS202040.0722002

    YANG F ZH, CHEN X H, ZHAO ZH CH, et al. Visible-infrared imaging spectrometer for the exploration of asteroids[J]. Acta Optica Sinica, 2020, 40(7): 0722002. (in Chinese) doi: 10.3788/AOS202040.0722002
    [18]
    冯蕾, 魏立冬, 杨雷, 等. 双通道曲面棱镜高光谱成像系统设计[J]. 光学学报,2019,39(5):0511002. doi: 10.3788/AOS201939.0511002

    FENG L, WEI L D, YANG L, et al. Design of double-channel hyperspectral imaging system based on curved prism[J]. Acta Optica Sinica, 2019, 39(5): 0511002. (in Chinese) doi: 10.3788/AOS201939.0511002
    [19]
    HE ZH P, WANG B Y, LV G, et al.. Visible and near-infrared imaging spectrometer (VNIS) for Chang'E-3[C]. Proceedings of SPIE 9263, Multispectral, Hyperspectral, and Ultraspectral Remote Sensing Technology, Techniques and Applications V, SPIE, 2014: 92630D.
    [20]
    陈洋君, 吴志勇, 崔明, 等. 基于MAX9259/MAX9260的CameraLink图像数据光纤传输技术[J]. 中国光学,2018,11(6):1017-1023. doi: 10.3788/co.20181106.1017

    CHEN Y J, WU ZH Y, CUI M, et al. CameraLink image data fiber transmission technology based on MAX9259/MAX9260[J]. Chinese Optics, 2018, 11(6): 1017-1023. (in Chinese) doi: 10.3788/co.20181106.1017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article views(1258) PDF downloads(182) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return