Volume 15 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
FENG Jian-xin, WANG Qiang, WANG Ya-lei, XU Biao. Risley-prism inverse algorithm based on equivalent vector model[J]. Chinese Optics, 2022, 15(1): 56-64. doi: 10.37188/CO.2021-0117
 Citation: FENG Jian-xin, WANG Qiang, WANG Ya-lei, XU Biao. Risley-prism inverse algorithm based on equivalent vector model[J]. Chinese Optics, 2022, 15(1): 56-64.

Risley-prism inverse algorithm based on equivalent vector model

doi: 10.37188/CO.2021-0117
Funds:  Supported by National Natural Science Foundation of China (No. 61603183); Nanjing University of Aeronautics and Astronautics graduate student innovation base (laboratory) Open Fund Project (No. kfjj20201502)
• Corresponding author: fengjx774@163.com
• Received Date: 2021-05-29
• Rev Recd Date: 2021-07-13
• Available Online: 2021-08-20
• Publish Date: 2022-01-19
• In order to further improve the calculation accuracy and reduce the calculation time of the inverse algorithm in the Risley-prism structure, a new algorithm is proposed. It combines the forward iterative method with the equivalent vector model of the Risley-prism to produce an equivalent vector iterative method of calculation. Firstly, the equivalent vector model of the wedge is established according to its deflection. Then, the vector coordinates of the light emitted from the Risley-prism are solved through vector superposition. The equivalent vector model is then substituted into the two-step inverse solution algorithm to calculate the approximate value of the rotation angle of the Risley-prism. Finally, the inverse equivalent vector iteration algorithm is proposed by using forward iteration and gradual approximation, and the rotation angle of Risley-prism is obtained. The experimental results show that the accuracy of the algorithm reaches 10 μm and the calculation time is less than 0.1 ms. The algorithm can effectively improve calculation accuracy, reduce calculation time, and has application prospects in the field of high-precision beam pointing.
•  [1] 邱赛. 空间激光通信旋转双棱镜光束指向系统偏差修正方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020. QIU S. Research on the deviation correction method of beam pointing system of Risley prism in space laser communication[D]. Changchun: University of Chinese Academy of Sciences (Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences), 2020. (in Chinese). [2] LU SH W, GAO M, YANG Y, et al. Inter-satellite laser communication system based on double Risley prisms beam steering[J]. Applied Optics, 2019, 58(27): 7517-7522. [3] 范大鹏, 周远, 鲁亚飞, 等. 旋转双棱镜光束指向控制技术综述[J]. 中国光学,2013,6(2):136-150. FAN D P, ZHOU Y, LU Y F, et al. Overview of beam steering technology based on rotational double prisms[J]. Chinese Optics, 2013, 6(2): 136-150. (in Chinese) [4] LAI SH F, LEE C C. Analytic inverse solutions for Risley prisms in four different configurations for positing and tracking systems[J]. Applied Optics, 2018, 57(35): 10172-10182. [5] 曾昊旻, 李松, 张智宇, 等. 车载激光雷达Risley棱镜光束扫描系统[J]. 光学 精密工程,2019,27(7):1444-1450. ZENG H M, LI S, ZHANG ZH Y, et al. Risley-prism-based beam scanning system for mobile lidar[J]. Optics and Precision Engineering, 2019, 27(7): 1444-1450. (in Chinese) [6] LI Y J. Closed form analytical inverse solutions for Risley-prism-based beam steering systems in different configurations[J]. Applied Optics, 2011, 50(22): 4302-4309. [7] LI Y J. Third-order theory of the Risley-prism-based beam steering system[J]. Applied Optics, 2011, 50(5): 679-686. [8] TAO X D, CHO H, JANABI-SHARIFI F. Active optical system for variable view imaging of micro objects with emphasis on kinematic analysis[J]. Applied Optics, 2008, 47(22): 4121-4132. [9] LI A H, SUN W, GAO X. Nonlinear inverse solution by the look-up table method for Risley-prism-based scanner[J]. Optica Applicata, 2016, 46(4): 501-515. [10] LI A H, SUN W S, YI W L. An overview of inverse solution expressions for Risley-prism-based scanner[J]. Proceedings of SPIE, 2016, 9947: 99470Z. [11] 周远, 鲁亚飞, 黑沫, 等. 旋转双棱镜光束指向的反向解析解[J]. 光学 精密工程,2013,21(7):1693-1700. ZHOU Y, LU Y F, HEI M, et al. Analytical inverse solutions for rotational double prism beam steering[J]. Optics and Precision Engineering, 2013, 21(7): 1693-1700. (in Chinese) [12] 张鲁薇, 王卫兵, 王锐, 等. 基于正解过程的Risley棱镜光束指向控制精度分析[J]. 中国光学,2017,10(4):507-513. ZHANG L W, WANG W B, WANG R, et al. Analysis of beam steering control precision for Risley prisms based on forward solution[J]. Chinese Optics, 2017, 10(4): 507-513. (in Chinese) [13] 姚宇翔. 基于强化学习的旋转双棱镜控制技术研究[D]. 成都: 中国科学院大学(中国科学院光电技术研究所), 2020. YAO Y X. Research on Risley prism control technology based on reinforcement learning[D]. Chengdu: University of Chinese Academy of Sciences (Institute of Optics and Electronics, Chinese Academy of Sciences), 2020. (in Chinese). [14] 李锦英, 陈科, 彭起, 等. 旋转双棱镜大范围快速高精度扫描技术[J]. 光电技术应用,2020,35(2):44-48. LI J Y, CHEN K, PENG Q, et al. Wide-range, fast and high precision scanning technology based on rotational double prisms[J]. Electro-Optic Technology Application, 2020, 35(2): 44-48. (in Chinese) [15] 郭云曾, 杨小军, 杨小君, 等. 旋转双光楔光路引导系统Matlab仿真研究[J]. 红外与激光工程,2014,43(3):856-860. GUO Y Z, YANG X J, YANG X J, et al. Simulation study of rotating double optical wedge vectoring optics path based on Matlab[J]. Infrared and Laser Engineering, 2014, 43(3): 856-860. (in Chinese) [16] 李硕丰, 徐文东, 赵成强. 激光三维成像中双光楔扫描参数的确定及优化[J]. 红外与激光工程,2020,49(8):20190508. LI SH F, XU W D, ZHAO CH Q. Determination and optimization of Risley prisms scanning parameters in laser 3D imaging[J]. Infrared and Laser Engineering, 2020, 49(8): 20190508. (in Chinese)

Catalog

通讯作者: 陈斌, bchen63@163.com
• 1.

沈阳化工大学材料科学与工程学院 沈阳 110142

Figures(14)  / Tables(2)

Article views (211) PDF downloads(14) Cited by()

/