Volume 15 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
SHAN Qiu-sha, XIE Mei-lin, LIU Zhao-hui, CHEN Rong-li, DUAN Jing, LIU Kai, JIANG Kai, ZHOU Liang, YAN Pei-pei. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. doi: 10.37188/CO.2021-0116
Citation: SHAN Qiu-sha, XIE Mei-lin, LIU Zhao-hui, CHEN Rong-li, DUAN Jing, LIU Kai, JIANG Kai, ZHOU Liang, YAN Pei-pei. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. doi: 10.37188/CO.2021-0116

Design of cooled long-wavelength infrared imaging optical system

doi: 10.37188/CO.2021-0116
Funds:  Supported by the National Natural Science Foundation of China (No. 61805275); CAS “Light of West China” Program (No. XAB2017B27)
More Information
  • Corresponding author: shqsh.2007@163.comlzh@opt.ac.cn
  • Received Date: 29 May 2021
  • Rev Recd Date: 16 Jun 2021
  • Available Online: 17 Aug 2021
  • Publish Date: 19 Jan 2022
  • Aiming at 640×512 long-wavelength infrared cooled detectors, a cooled long-wavelength infrared optical system was designed to track and detect an infrared target. The optical system adopts the secondary imaging structure to ensure 100% cold-shielding efficiency, and adopts a combination of optical material Ge and ZnS to achieve aberration correction and achromatic design. By introducing the high-order aspheric surface, the high aberration of the system is well-corrected, thus the system structure is simplified. The optical system is composed of 6 lenses. The focal length is 400 mm, the working bands are 7.7~9.3 μm, the field of view is 1.37°×1.10°, and the F-number is 2. The design results show that at a spatial frequency of 33 lp/mm, the MTF of off-axis field of view is more than 0.24, which approaches the diffraction limit and has high imaging quality. In the operating temperature range of −35~+55 ℃, the focusing lens is used to ensure the imaging quality under high and low temperature environments, which can be used for infrared tracking detection over a wide range of temperatures.


  • loading
  • [1]
    汤天瑾, 李岩. 红外相机共孔径双波段成像光学系统[J]. 应用光学,2015,36(4):513-518. doi: 10.5768/JAO201536.0401004

    TANG T J, LI Y. Dual-band common aperture optical system for infrared camera[J]. Journal of Applied Optics, 2015, 36(4): 513-518. (in Chinese) doi: 10.5768/JAO201536.0401004
    陈建发, 潘枝峰, 王合龙, 等. 基于制冷型探测器的双波段红外光学系统无热化设计[J]. 电光与控制,2019,26(10):83-86. doi: 10.3969/j.issn.1671-637X.2019.10.017

    CHEN J F, PAN ZH F, WANG H L, et al. Athermalization design of a dual-band infrared optical system with cryogenic detector[J]. Electronics Optics &Control, 2019, 26(10): 83-86. (in Chinese) doi: 10.3969/j.issn.1671-637X.2019.10.017
    刘星洋, 翟尚礼, 李靖, 等. 制冷型中波红外偏振成像光学系统设计[J]. 红外与激光工程,2021,50(2):20200208. doi: 10.3788/IRLA20200208

    LIU X Y, ZHAI SH L, LI J, et al. Design of cooled medium-wave infrared polarization imaging optical system[J]. Infrared and Laser Engineering, 2021, 50(2): 20200208. (in Chinese) doi: 10.3788/IRLA20200208
    李昂, 王永刚, 邬志强, 等. 光学加工过程中高次非球面的三坐标测量数据处理[J]. 中国光学,2020,13(2):302-312. doi: 10.3788/co.20201302.0302

    LI A, WANG Y G, WU ZH Q, et al. Data processing of high-order aspheric surface measurements using CMM in optical fabrication[J]. Chinese Optics, 2020, 13(2): 302-312. (in Chinese) doi: 10.3788/co.20201302.0302
    付强, 张新. 基于硫系玻璃的中波红外光学系统无热化设计[J]. 红外与激光工程,2015,44(5):1467-1471. doi: 10.3969/j.issn.1007-2276.2015.05.013

    FU Q, ZHANG X. Athermalization of the medium-wave infrared optical system based on chalcogenide glasses[J]. Infrared and Laser Engineering, 2015, 44(5): 1467-1471. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.05.013
    吴文达, 张葆, 洪永丰, 等. 机载红外与合成孔径雷达共孔径天线设计[J]. 中国光学,2020,13(3):595-604.

    WU W D, ZHANG B, HONG Y F, et al. Design of co-aperture antenna for airborne infrared and synthetic aperture radar[J]. Chinese Optics, 2020, 13(3): 595-604. (in Chinese)
    吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036

    LV B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036
    潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.

    PAN J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Suzhou University Press, 2004. (in Chinese)
    孟超, 郭俊, 付芸. 利用非球面简化红外连续变焦光学系统的研究[J]. 红外,2010,31(4):6-11. doi: 10.3969/j.issn.1672-8785.2010.04.002

    MENG CH, GUO J, FU Y. Design of far-infrared zoom optical system based on aspheric surface[J]. Infrared, 2010, 31(4): 6-11. (in Chinese) doi: 10.3969/j.issn.1672-8785.2010.04.002
    杨乐, 孙强, 王健, 等. 长波红外连续变焦光学系统设计[J]. 红外与激光工程,2012,41(4):999-1004. doi: 10.3969/j.issn.1007-2276.2012.04.031

    YANG L, SUN Q, WANG J, et al. Design of long-wave infrared continuous zoom optical system[J]. Infrared and Laser Engineering, 2012, 41(4): 999-1004. (in Chinese) doi: 10.3969/j.issn.1007-2276.2012.04.031
    朱广亮, 杨林, 刘灿. 制冷型中波红外光学系统无热化设计[J]. 光学与光电技术,2021,19(2):98-102.

    ZHU G L, YANG L, LIU C. Athermalized design of refrigerated medium-wave infrared short-focus optical system[J]. Optics &Optoelectronic Technology, 2021, 19(2): 98-102. (in Chinese)
    HOWARD J W, ABEL I R. Narcissus: reflections on retroreflections in thermal imaging systems[J]. Applied Optics, 1982, 21(18): 3393-3397. doi: 10.1364/AO.21.003393
    AKRAM M N. Design of a multiple-field-of-view optical system for 3- to 5-μm infrared focal-plane arrays[J]. Optical Engineering, 2003, 42(6): 1704-1714. doi: 10.1117/1.1572892
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(2)

    Article views(612) PDF downloads(139) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint