Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
WANG Peng, FU Qi-dong, LI Yu-rui, YE Fang-wei. Research developments on photonic moiré lattices[J]. Chinese Optics, 2021, 14(4): 986-997. doi: 10.37188/CO.2021-0110
Citation: WANG Peng, FU Qi-dong, LI Yu-rui, YE Fang-wei. Research developments on photonic moiré lattices[J]. Chinese Optics, 2021, 14(4): 986-997. doi: 10.37188/CO.2021-0110

Research developments on photonic moiré lattices

doi: 10.37188/CO.2021-0110
Funds:  Supported by National Natural Science Foundation of China (No.91950120, No. 11690033); Scientific Funding of Shanghai (No. 9ZR1424400); Shanghai Outstanding Academic Leaders Plan (No. 20XD1402000)
More Information
  • Corresponding author: fangweiye@sjtu.edu.cn
  • Received Date: 14 May 2021
  • Rev Recd Date: 21 May 2021
  • Available Online: 02 Jun 2021
  • Publish Date: 01 Jul 2021
  • Moiré lattices are composite structures composed of two identical or similar periodic structures. Inspired by the research in the van der Waals heterostructures, the research interest on moiré physics in optical, acoustic, mechanical, and thermal systems is either renewing or emerging. Here we review the recent research developments on optical/photonic moiré lattices, including monolayered and bilayered moiré structures, discussing their linear and nonlinear optical properties of different realization of moiré lattices.

     

  • loading
  • [1]
    叶芳伟. 生活中的莫尔晶格[EB/OL][2021.07.21] https://www.physics.sjtu.edu.cn/fangweiye/moire.

    YE F W. Moiré lattices in life[EB/OL][2021.07.21] https://www.physics.sjtu.edu.cn/fangweiye/moire.
    [2]
    OHTA T, BOSTWICK A, SEYLLER T, et al. Controlling the electronic structure of bilayer graphene[J]. Science, 2006, 313(5789): 951-954. doi: 10.1126/science.1130681
    [3]
    GEIM A K, GRIGORIEVA I V. Van der Waals heterostructures[J]. Nature, 2013, 499(7459): 419-425. doi: 10.1038/nature12385
    [4]
    OOSTINGA J B, HEERSCHE H B, LIU X L, et al. Gate-induced insulating state in bilayer graphene devices[J]. Nature Materials, 2008, 7(2): 151-157. doi: 10.1038/nmat2082
    [5]
    LIU L X, ZHOU H L, CHENG R, et al. High-yield chemical vapor deposition growth of high-quality large-area AB-stacked bilayer graphene[J]. ACS Nano, 2012, 6(9): 8241-8249. doi: 10.1021/nn302918x
    [6]
    LAI Y H, HO J H, CHANG C P, et al. Magnetoelectronic properties of bilayer Bernal graphene[J]. Physical Review B, 2008, 77(8): 085426. doi: 10.1103/PhysRevB.77.085426
    [7]
    LI J, ZHANG R X, YIN ZH X, et al. A valley valve and electron beam splitter[J]. Science, 2018, 362(6419): 1149-1152. doi: 10.1126/science.aao5989
    [8]
    BITTENCOURT V A S V, BERNARDINI A E. Lattice-layer entanglement in Bernal-stacked bilayer graphene[J]. Physical Review B, 2017, 95(19): 195145. doi: 10.1103/PhysRevB.95.195145
    [9]
    LI H Y, YING H, CHEN X P, et al. Thermal conductivity of twisted bilayer graphene[J]. Nanoscale, 2014, 6(22): 13402-13408. doi: 10.1039/C4NR04455J
    [10]
    CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. doi: 10.1038/nature26154
    [11]
    CAO Y, FATEMI V, FANG SH A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi: 10.1038/nature26160
    [12]
    PARK M J, KIM Y, CHO G Y, et al. Higher-order topological insulator in twisted bilayer graphene[J]. Physical Review Letters, 2019, 123(21): 216803. doi: 10.1103/PhysRevLett.123.216803
    [13]
    SEYLER K L, RIVERA P, YU H Y, et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 2019, 567(7746): 66-70. doi: 10.1038/s41586-019-0957-1
    [14]
    YUAN L, ZHENG B Y, KUNSTMANN J, et al. Twist-angle-dependent interlayer exciton diffusion in WS2-WSe2 heterobilayers[J]. Nature Materials, 2020, 19(6): 617-623. doi: 10.1038/s41563-020-0670-3
    [15]
    CHEN G R, JIANG L L, WU SH, et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice[J]. Nature Physics, 2019, 15(3): 237-241. doi: 10.1038/s41567-018-0387-2
    [16]
    JIANG B Y, NI G X, ADDISON Z, et al. Plasmon reflections by topological electronic boundaries in bilayer graphene[J]. Nano Letters, 2017, 17(11): 7080-7085. doi: 10.1021/acs.nanolett.7b03816
    [17]
    LIU Y, WEISS N O, DUAN X D, et al. Van der Waals heterostructures and devices[J]. Nature, 2016, 1(9): 16042.
    [18]
    CARR S, MASSATT D, FANG SH A, et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J]. Physical Review B, 2017, 95(7): 075420. doi: 10.1103/PhysRevB.95.075420
    [19]
    HUANG CH M, YE F W, CHEN X F, et al. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials[J]. Scientific reports, 2016, 6: 32546. doi: 10.1038/srep32546
    [20]
    WANG P, ZHENG Y L, CHEN X F, et al. Localization and delocalization of light in photonic moiré lattices[J]. Nature, 2020, 577(7788): 42-46. doi: 10.1038/s41586-019-1851-6
    [21]
    FU Q D, WANG P, HUANG CH M, et al. Optical soliton formation controlled by angle twisting in photonic moiré lattices[J]. Nature Photonics, 2020, 14(11): 663-668. doi: 10.1038/s41566-020-0679-9
    [22]
    DENG Y CH, OUDICH M, GERARD N J R K, et al. Magic-angle bilayer phononic graphene[J]. Physical Review B, 2020, 102(18): 180304(R). doi: 10.1103/PhysRevB.102.180304
    [23]
    GARDEZI S M, PIRIE H, DORRELL W, et al.. Acoustic twisted bilayer graphene[J]. arXiv: 2010.10037, 2020.
    [24]
    LÓPEZ M R, PEÑARANDA F, CHRISTENSEN J, et al. Flat bands in magic-angle vibrating plates[J]. Physical Review Letters, 2020, 125(21): 214301. doi: 10.1103/PhysRevLett.125.214301
    [25]
    O’RIORDAN L J, WHITE A C, BUSCH T. Moiré superlattice structures in kicked Bose-Einstein condensates[J]. Physical Review A, 2016, 93(2): 023609. doi: 10.1103/PhysRevA.93.023609
    [26]
    GONZÁLEZ-TUDELA A, CIRAC J I. Cold atoms in twisted-bilayer optical potentials[J]. Physical Review A, 2019, 100(5): 053604. doi: 10.1103/PhysRevA.100.053604
    [27]
    DURELLI A J, PARKS V J. Moiré Analysis of Strain[M]. Englewood Cliffs: Prentice-Hall, 1970.
    [28]
    TAKASAKI H. Moiré topography[J]. Applied Optics, 1970, 9(6): 1467-1472. doi: 10.1364/AO.9.001467
    [29]
    CADARSO V J, CHOSSON S, SIDLER K, et al. High-resolution 1D moirés as counterfeit security features[J]. Light:Science &Applications, 2013, 2(7): e86.
    [30]
    KOCABAS A, SENLIK S S, AYDINLI A. Slowing down surface plasmons on a moiré surface[J]. Physical Review Letters, 2009, 102(6): 063901. doi: 10.1103/PhysRevLett.102.063901
    [31]
    BALCI S, KARABIYIK M, KOCABAS A, et al. Coupled plasmonic cavities on moire surfaces[J]. Plasmonics, 2010, 5(4): 429-436. doi: 10.1007/s11468-010-9161-8
    [32]
    KARADEMIR E, BALCI S, KOCABAS C, et al. Lasing in a slow Plasmon moiré cavity[J]. ACS Photonics, 2015, 2(7): 805-809. doi: 10.1021/acsphotonics.5b00168
    [33]
    KHURGIN J B. Light slowing down in Moiré fiber gratings and its implications for nonlinear optics[J]. Physical Review A, 2000, 62(1): 013821. doi: 10.1103/PhysRevA.62.013821
    [34]
    XUE R D, WANG W, WANG L Q, et al. Localization and oscillation of optical beams in Moiré lattices[J]. Optics Express, 2017, 25(5): 5788-5796. doi: 10.1364/OE.25.005788
    [35]
    WANG Y, LAN Y J, SONG Q, et al. Colorful efficient Moiré-perovskite solar cells[J]. Advanced Materials, 2021, 33(15): 2008091. doi: 10.1002/adma.202008091
    [36]
    GUO CH, GUO Y, LOU B CH, et al. Wide wavelength-tunable narrow-band thermal radiation from moiré patterns[J]. Applied Physics Letters, 2021, 118(13): 131111. doi: 10.1063/5.0047308
    [37]
    HUANG SH F, ZHANG H F, WU Z L, et al. Large-area ordered P-type Si nanowire arrays as photocathode for highly efficient photoelectrochemical hydrogen generation[J]. ACS Applied Materials &Interfaces, 2014, 6(15): 12111-12118.
    [38]
    WU Z L, CHEN K, MENZ R, et al. Tunable multiband metasurfaces by moiré nanosphere lithography[J]. Nanoscale, 2015, 7(48): 20391-20396. doi: 10.1039/C5NR05645D
    [39]
    WU Z L, LI W, YOGEESH M N, et al. Tunable graphene metasurfaces with gradient features by self-assembly-based Moiré nanosphere lithography[J]. Advanced Optical Materials, 2016, 4(12): 2035-2043. doi: 10.1002/adom.201600242
    [40]
    HAN J H, KIM I, RYU J W, et al. Rotationally reconfigurable metamaterials based on moiré phenomenon[J]. Optics Express, 2015, 23(13): 17443-17449. doi: 10.1364/OE.23.017443
    [41]
    GAO Y M, WEN Z R, ZHENG L R, et al. Complex periodic non-diffracting beams generated by superposition of two identical periodic wave fields[J]. Optics Communications, 2017, 389: 123-127. doi: 10.1016/j.optcom.2016.12.022
    [42]
    JIN W T, SONG M, XUE Y L, et al. Construction of photorefractive photonic quasicrystal microstructures by twisted square lattices[J]. Applied Optics, 2020, 59(22): 6638-6641. doi: 10.1364/AO.397622
    [43]
    FLEISCHER J W, SEGEV M, EFREMIDIS N K, et al. Observation of two-dimensional discrete solitons in optically induced nonlinear photonic lattices[J]. Nature, 2003, 422(6928): 147-150. doi: 10.1038/nature01452
    [44]
    陈俞安. 五类莫尔晶格的光学特性[D]. 上海: 上海交通大学, 2020.

    CHEN Y A. Optical properties of five kinds Moiré lattice[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese).
    [45]
    李静. 基于复杂晶格的莫尔晶格的光学性质[D]. 上海: 上海交通大学, 2020.

    LI J. Optical properties of Moiré lattice based on complex lattice[D]. Shanghai: Shanghai Jiaotong University, 2020. (in Chinese).
    [46]
    MUKHERJEE S, SPRACKLEN A, CHOUDHURY D, et al. Observation of a localized flat-band state in a photonic lieb lattice[J]. Physical Review Letters, 2015, 114(24): 245504. doi: 10.1103/PhysRevLett.114.245504
    [47]
    VICENCIO R A, CANTILLANO C, MORALES-INOSTROZA L, et al. Observation of localized states in lieb photonic lattices[J]. Physical Review Letters, 2015, 114(24): 245503. doi: 10.1103/PhysRevLett.114.245503
    [48]
    XIA SH Q, RAMACHANDRAN A, XIA SH Q, et al. Unconventional flatband line states in photonic lieb lattices[J]. Physical Review Letters, 2018, 121(26): 263902. doi: 10.1103/PhysRevLett.121.263902
    [49]
    LEYKAM D, ANDREANOV A, FLACH S. Artificial flat band systems: from lattice models to experiments[J]. Advances in Physics:X, 2018, 3(1): 1473052. doi: 10.1080/23746149.2018.1473052
    [50]
    GÓMEZ-URREA H A, OSPINA-MEDINA M C, CORREA-ABAD J D, et al. Tunable band structure in 2D Bravais-Moiré photonic crystal lattices[J]. Optics Communications, 2020, 459: 125081. doi: 10.1016/j.optcom.2019.125081
    [51]
    BISTRITZER R, MACDONALD A H. Moiré bands in twisted double-layer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(30): 12233-12237. doi: 10.1073/pnas.1108174108
    [52]
    ZHANG ZH M, WANG Y M, WATANABE K, et al. Flat bands in twisted bilayer transition metal dichalcogenides[J]. Nature Physics, 2020, 16(11): 1093-1096. doi: 10.1038/s41567-020-0958-x
    [53]
    UTAMA M I B, KOCH R J, LEE K, et al. Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist[J]. Nature Physics, 2021, 17(2): 184-188. doi: 10.1038/s41567-020-0974-x
    [54]
    HU G W, KRASNOK A, MAZOR Y, et al. Moiré hyperbolic metasurfaces[J]. Nano Letters, 2020, 20(5): 3217-3224. doi: 10.1021/acs.nanolett.9b05319
    [55]
    HU G W, OU Q D, SI G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209-213. doi: 10.1038/s41586-020-2359-9
    [56]
    LOU B CH, ZHAO N, MINKOV M, et al. Theory for twisted bilayer photonic crystal slabs[J]. Physical Review Letters, 2021, 126(13): 136101. doi: 10.1103/PhysRevLett.126.136101
    [57]
    WANG W H, GAO W L, CHEN X D, et al. Moiré fringe induced gauge field in photonics[J]. Physical Review Letters, 2020, 125(20): 203901. doi: 10.1103/PhysRevLett.125.203901
    [58]
    OUDICH M, SU G X, DENG Y CH, et al.. Bilayer photonic graphene[J]. arXiv: 2103.03686, 2021.
    [59]
    LIU ZH, DU ZH Y, HU B, et al. Wide-angle Moiré metalens with continuous zooming[J]. Journal of the Optical Society of America B, 2019, 36(10): 2810-2816. doi: 10.1364/JOSAB.36.002810
    [60]
    CHEN ZH G, SEGEV M, CHRISTODOULIDES D N. Optical spatial solitons: historical overview and recent advances[J]. Reports on Progress in Physics, 2012, 75(8): 086401. doi: 10.1088/0034-4885/75/8/086401
    [61]
    YE F, MIHALACHE D, HU B, et al. Subwavelength plasmonic lattice solitons in arrays of metallic nanowires[J]. Physical Review Letters, 2010, 104(10): 106802. doi: 10.1103/PhysRevLett.104.106802
    [62]
    BAĞCI M. Soliton dynamics in quadratic nonlinear media with two-dimensional Pythagorean aperiodic lattices[J]. Journal of the Optical Society of America B, 2021, 38(4): 1276-1282. doi: 10.1364/JOSAB.416299
    [63]
    LEI F Q, WANG CH F. Study on the properties of solitons in moiré lattice[J]. Optik, 2020, 219: 165169. doi: 10.1016/j.ijleo.2020.165169
    [64]
    FEI Z, RODIN A S, ANDREEV G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85. doi: 10.1038/nature11253
    [65]
    CHEN J N, BADIOLI M, ALONSO-GONZALEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi: 10.1038/nature11254
    [66]
    SUNKU S S, NI G X, JIANG B Y, et al. Photonic crystals for nano-light in moiré graphene superlattices[J]. Science, 2018, 362(6419): 1153-1156. doi: 10.1126/science.aau5144
    [67]
    LIN X, LIU Z F, STAUBER T, et al. Chiral plasmons with twisted atomic bilayers[J]. Physical Review Letters, 2020, 125(7): 077401. doi: 10.1103/PhysRevLett.125.077401
    [68]
    BREY L, STAUBER T, SLIPCHENKO T, et al. Plasmonic Dirac cone in twisted bilayer graphene[J]. Physical Review Letters, 2020, 125(25): 256804. doi: 10.1103/PhysRevLett.125.256804
    [69]
    ZHANG X Y, ZHONG Y H, LOW T, et al. Emerging chiral optics from chiral interfaces[J]. Physical Review B, 2021, 103(19): 195405. doi: 10.1103/PhysRevB.103.195405
    [70]
    JIANG L L, SHI ZH W, ZENG B, et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J]. Nature Materials, 2016, 15(8): 840-844. doi: 10.1038/nmat4653
    [71]
    WU F CH, LOVORN T, MACDONALD A H. Topological exciton bands in Moiré heterojunctions[J]. Physical Review Letters, 2017, 118(14): 147401. doi: 10.1103/PhysRevLett.118.147401
    [72]
    YU H Y, LIU G B, TANG J J, et al. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices[J]. Science Advances, 2017, 3(11): e1701696. doi: 10.1126/sciadv.1701696
    [73]
    KIM C J, BROWN L, GRAHAM M W, et al. Stacking order dependent second harmonic generation and topological defects in h-BN bilayers[J]. Nano Letters, 2013, 13(11): 5660-5665. doi: 10.1021/nl403328s
    [74]
    HSU W T, ZHAO Z A, LI L J, et al. Second harmonic generation from artificially stacked transition metal dichalcogenide twisted bilayers[J]. ACS Nano, 2014, 8(3): 2951-2958. doi: 10.1021/nn500228r
    [75]
    YAO K Y, YANEV E, CHUANG H J, et al. Continuous wave sum frequency generation and imaging of monolayer and heterobilayer two-dimensional semiconductors[J]. ACS Nano, 2020, 14(1): 708-714. doi: 10.1021/acsnano.9b07555
    [76]
    LIU F, WU W J, BAI Y S, et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices[J]. Science, 2020, 367(6480): 903-906. doi: 10.1126/science.aba1416
    [77]
    YAO K Y, FINNEY N R, ZHANG J, et al.. Nonlinear twistoptics at symmetry-broken interfaces[J]. arXiv: 2006.13802, 2020.
    [78]
    ZHANG L, WU F CH, HOU SH C, et al. Van der Waals heterostructure polaritons with moiré-induced nonlinearity[J]. Nature, 2021, 591(7848): 61-65. doi: 10.1038/s41586-021-03228-5
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article views(1733) PDF downloads(377) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return