Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
XIAO Xing-jian, ZHU Shi-ning, LI Tao. Performance analysis of the multiwavelength achromatic metalens[J]. Chinese Optics, 2021, 14(4): 823-830. doi: 10.37188/CO.2021-0102
Citation: XIAO Xing-jian, ZHU Shi-ning, LI Tao. Performance analysis of the multiwavelength achromatic metalens[J]. Chinese Optics, 2021, 14(4): 823-830. doi: 10.37188/CO.2021-0102

Performance analysis of the multiwavelength achromatic metalens

doi: 10.37188/CO.2021-0102
Funds:  Supported by National Key R&D Program of China (No. 2016YFA0202103); National Natural Science Foundation of China (No. 91850204); Dengfeng Talent Program B of Nanjing University
More Information
  • Corresponding author: taoli@nju.edu.cn
  • Received Date: 08 May 2021
  • Rev Recd Date: 20 May 2021
  • Available Online: 27 May 2021
  • Publish Date: 01 Jul 2021
  • Due to the intrinsic constraints of metalenses’ achromatic bandwidth, lens size, and numerical aperture, it’s hard to create a high-performance large scale broadband achromatic metalens. Discrete multi-wavelength achromatic metalenses can exceed multiple of these restrictions of these parameters, which means they could perform more suitably. Here, we introduce a phase-dispersion space, by which we prove that multiwavelength achromatic metalenses are theoretically more efficient than broadband achromatic metalenses. The efficiency of dualwavelength achromatic metalenses is 4 times that of broadband achromatic metalenses when calculated by simulation. We also analyze the relationship between efficiency and the frequency interval of multiwavelength achromatic metalens, and conclude that efficiency will decrease first and then increase as the frequency interval increases.

     

  • loading
  • [1]
    MANSURIPUR M. Classical Optics and its Applications[M]. Cambridge, U.K.: Cambridge University Press, 2009: 9-22.
    [2]
    O'SHEA D C, SULESKI T J, KATHMAN A D, et al.. Diffractive Optics: Design, Fabrication, and Test[M]. Washington USA: SPIE Press, 2004: 57-82.
    [3]
    ARBABI A, HORIE Y, BALL A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmit arrays[J]. Nature Communications, 2015, 6(1): 7069. doi: 10.1038/ncomms8069
    [4]
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
    [5]
    KHORASANINEJAD M, SHI ZH J, ZHU A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137
    [6]
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187-195. doi: 10.1038/s41467-017-00166-7
    [7]
    SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light:Science &Applications, 2018, 7(1): 85.
    [8]
    CHEN W T, ZHU Z Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
    [9]
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
    [10]
    BALLI F, SULTAN M, LAMI S K, et al. A hybrid achromatic metalens[J]. Nature Communications, 2020, 11(1): 3892. doi: 10.1038/s41467-020-17646-y
    [11]
    肖行健, 祝世宁, 李涛. 宽带消色差平面透镜的设计与参量分析[J]. 红外与激光工程,2020,49(9):20201032. doi: 10.3788/IRLA20201032

    XIAO X J, ZHU SH N, LI T. Design and parametric analysis of the broadband achromatic flat lens[J]. Infrared and Laser Engineering, 2020, 49(9): 20201032. (in Chinese) doi: 10.3788/IRLA20201032
    [12]
    PALUM R. Image sampling with the Bayer color filter array[C]. PICS 2001: Image Processing, Image Quality, Image Capture, Systems Conference, Proceedings, 2001: 239-245.
    [13]
    AIETA F, KATS M A, GENEVET P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494
    [14]
    ARBABI E, ARBABI A, KAMALI S M, et al. Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules[J]. Optica, 2016, 3(6): 628-633. doi: 10.1364/OPTICA.3.000628
    [15]
    AVAYU O, ALMEIDA E, PRIOR Y, et al. Composite functional metasurfaces for multispectral achromatic optics[J]. Nature Communications, 2017, 8(1): 14992. doi: 10.1038/ncomms14992
    [16]
    LI ZH Y, LIN P, HUANG Y W, et al. Meta-optics achieves RGB-achromatic focusing for virtual reality[J]. Science Advances, 2021, 7(5): eabe4458. doi: 10.1126/sciadv.abe4458
    [17]
    AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v
    [18]
    LIANG H W, MARTINS A, BORGES B H V, et al. High performance metalenses: numerical aperture, aberrations, chromaticity, and trade-offs[J]. Optica, 2019, 6(12): 1461-1470. doi: 10.1364/OPTICA.6.001461
    [19]
    HOOKE R, JEEVES T A. “Direct Search”solution of numerical and statistical problems[J]. Journal of the ACM, 1961, 8(2): 212-229. doi: 10.1145/321062.321069
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article views(1388) PDF downloads(260) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return