Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LIU Dong-ming, LV Ting-ting, LIU Qiang, LIU Chao, SHI Jin-hui. Performance study on switchable and multifunctional metasurface wave plate[J]. Chinese Optics, 2021, 14(4): 1029-1037. doi: 10.37188/CO.2021-0100
Citation: LIU Dong-ming, LV Ting-ting, LIU Qiang, LIU Chao, SHI Jin-hui. Performance study on switchable and multifunctional metasurface wave plate[J]. Chinese Optics, 2021, 14(4): 1029-1037. doi: 10.37188/CO.2021-0100

Performance study on switchable and multifunctional metasurface wave plate

doi: 10.37188/CO.2021-0100
Funds:  Supported by National Natural Science Foundation of China (No. U1931121); Natural Science Foundation of Heilongjiang Province in China (No. ZD2020F002, No. ZD2018015)
More Information
  • Dynamically tunable and broadband control of polarization is important in terahertz applications such as wireless communication, sensing, and medical imaging. We propose a single-layered “stepped” hybrid metasurface based on wire resonator and VO2 phase transition, which enables the flexible switching between broadband quarter-wave plate and half-wave plate. The hybrid metasurface is a transmission-type broadband quarter-wave plate when VO2 film is insulating phase. At 1.43~2.43 THz, it can convert the normally propagating x-polarization to left-handed circular polarization with an ellipticity over 0.99 and 52% bandwidth of the central wavelength. The hybrid metasurface can realize x- to y-polarization conversion and act as a half-wave plate when VO2 is in a metallic phase. In addition, we study the wave plate performance at different oblique incident angles. The results show that the quarter-wave plate can achieve dynamic switching between broadband and dual-band properties and the half-wave plate can achieve a frequency tunability of 57% with the increase of the incident angle. The proposed switchable terahertz qurter-/half-wave plate is expected to promote the development of broadband polarization conversion components, tunable switches and compact optical components.

     

  • loading
  • [1]
    LIU SH, CUI T J, XU Q, et al. Anisotropic coding metamaterials and their powerful manipulation of differently polarized terahertz waves[J]. Light:Science &Applications, 2016, 5(5): e16076.
    [2]
    TYO J S, GOLDSTEIN D L, CHENAULT D B, et al. Review of passive imaging polarimetry for remote sensing applications[J]. Applied Optics, 2006, 45(22): 5453-5469. doi: 10.1364/AO.45.005453
    [3]
    DORRAH A H, RUBIN N A, ZAIDI A, et al. Metasurface optics for on-demand polarization transformations along the optical path[J]. Nature Photonics, 2021, 15(4): 287-296. doi: 10.1038/s41566-020-00750-2
    [4]
    LAUX E, GENET C, SKAULI T, et al. Plasmonic photon sorters for spectral and polarimetric imaging[J]. Nature Photonics, 2008, 2(3): 161-164. doi: 10.1038/nphoton.2008.1
    [5]
    李天佑, 黄玲玲, 王涌天. 超颖表面原理与研究进展[J]. 中国光学,2017,10(5):523-540. doi: 10.3788/co.20171005.0523

    LI T Y, HUANG L L, WANG Y T. The principle and research progress of metasurfaces[J]. Chinese Optics, 2017, 10(5): 523-540. (in Chinese) doi: 10.3788/co.20171005.0523
    [6]
    YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
    [7]
    LIU ZH CH, LI ZH CH, LIU ZH, et al. Single-layer plasmonic metasurface half-wave plates with wavelength-independent polarization conversion angle[J]. ACS Photonics, 2017, 4(8): 2061-2069. doi: 10.1021/acsphotonics.7b00491
    [8]
    XIA R, JING X F, GUI X C, et al. Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials[J]. Optical Materials Express, 2017, 7(3): 977-988. doi: 10.1364/OME.7.000977
    [9]
    ZHAO Y, ALÙ A. Manipulating light polarization with ultrathin plasmonic metasurfaces[J]. Physical Review B, 2011, 84(20): 205428. doi: 10.1103/PhysRevB.84.205428
    [10]
    LIU D M, LV T T, DONG G H, et al. Broadband and wide angle quarter-wave plate based on single-layered anisotropic terahertz metasurface[J]. Optics Communications, 2021, 483: 126629. doi: 10.1016/j.optcom.2020.126629
    [11]
    CONG L Q, XU N N, GU J Q, et al. Highly flexible broadband terahertz metamaterial quarter-wave plate[J]. Laser &Photonics Reviews, 2014, 8(4): 626-632.
    [12]
    SHI ZH J, ZHU A Y, LI ZH Y, et al. Continuous angle-tunable birefringence with freeform metasurfaces for arbitrary polarization conversion[J]. Science Advances, 2020, 6(23): eaba3367. doi: 10.1126/sciadv.aba3367
    [13]
    ZHU Y H, VEGESNA S, ZHAO Y, et al. Tunable dual-band terahertz metamaterial bandpass filters[J]. Optics Letters, 2013, 38(14): 2382-2384. doi: 10.1364/OL.38.002382
    [14]
    霍红, 延凤平, 王伟, 等. 基于超材料的太赫兹高灵敏度传感器的设计[J]. 中国激光,2020,47(8):0814004. doi: 10.3788/CJL202047.0814004

    HUO H, YAN F P, WANG W, et al. Terahertz high-sensitivity sensor design based on metamaterial[J]. Chinese Journal of Lasers, 2020, 47(8): 0814004. (in Chinese) doi: 10.3788/CJL202047.0814004
    [15]
    LUO J, SHI X ZH, LUO X Q, et al. Broadband switchable terahertz half-/quarter-wave plate based on metal-VO2 metamaterials[J]. Optics Express, 2020, 28(21): 30861-30870. doi: 10.1364/OE.406006
    [16]
    ZHANG Y, FENG Y J, ZHU B, et al. Switchable quarter-wave plate with graphene based metamaterial for broadband terahertz wave manipulation[J]. Optics Express, 2015, 23(21): 27230-27239. doi: 10.1364/OE.23.027230
    [17]
    付亚男, 张新群, 赵国忠, 等. 基于谐振环的太赫兹宽带偏振转换器件研究[J]. 物理学报,2017,66(18):180701. doi: 10.7498/aps.66.180701

    FU Y N, ZHANG X Q, ZHAO G ZH, et al. A broadband polarization converter based on resonant ring in terahertz region[J]. Acta Physica Sinica, 2017, 66(18): 180701. (in Chinese) doi: 10.7498/aps.66.180701
    [18]
    RAO Y F, PAN L, OUYANG CH M, et al. Asymmetric transmission of linearly polarized waves based on Mie resonance in all-dielectric terahertz metamaterials[J]. Optics Express, 2020, 28(20): 29855-29864. doi: 10.1364/OE.404912
    [19]
    HAN ZH L, OHNO S, TOKIZANE Y, et al. Off-resonance and in-resonance metamaterial design for a high-transmission terahertz-wave quarter-wave plate[J]. Optics Letters, 2018, 43(12): 2977-2980. doi: 10.1364/OL.43.002977
    [20]
    葛栋森, 许全, 魏明贵, 等. 基于曲折线型介质超材料的宽带太赫兹四分之一波片[J]. 红外与激光工程,2017,46(9):0921002. doi: 10.3788/IRLA201746.0921002

    GE D S, XU Q, WEI M G, et al. Broadband terahertz quarter wave plate based on meander-line dielectric metamaterials[J]. Infrared and Laser Engineering, 2017, 46(9): 0921002. (in Chinese) doi: 10.3788/IRLA201746.0921002
    [21]
    LI ZH CH, LIU W W, CHENG H, et al. Realizing broadband and invertible linear-to-circular polarization converter with ultrathin single-layer metasurface[J]. Scientific Reports, 2016, 5: 18106. doi: 10.1038/srep18106
    [22]
    AKO R T, LEE W S L, BHASKARAN M, et al. Broadband and wide-angle reflective linear polarization converter for terahertz waves[J]. APL Photonics, 2019, 4(9): 096104. doi: 10.1063/1.5116149
    [23]
    MA SH J, WANG X K, LUO W J, et al. Ultra-wide band reflective metamaterial wave plates for terahertz waves[J]. EPL (Europhysics Letters), 2017, 117(3): 37007. doi: 10.1209/0295-5075/117/37007
    [24]
    MA ZH J, HANHAM S M, GONG Y D, et al. All-dielectric reflective half-wave plate metasurface based on the anisotropic excitation of electric and magnetic dipole resonances[J]. Optics Letters, 2018, 43(4): 911-914. doi: 10.1364/OL.43.000911
    [25]
    ZEGHDOUDI T, KEBCI Z, MEZEGHRANE A, et al. Half-wave plate based on a birefringent metamaterial in the visible range[J]. Optics Communications, 2021, 487: 126804. doi: 10.1016/j.optcom.2021.126804
    [26]
    ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 2018, 5(3): 303-310. doi: 10.1364/OPTICA.5.000303
    [27]
    LEE S, KIM W T, KANG J H, et al. Single-layer metasurfaces as spectrally tunable terahertz half- and quarter-waveplates[J]. ACS Applied Materials &Interfaces, 2019, 11(8): 7655-7660.
    [28]
    WANG D CH, ZHANG L CH, GONG Y D, et al. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces[J]. IEEE Photonics Journal, 2016, 8(1): 5500308.
    [29]
    WANG D CH, ZHANG L CH, GU Y H, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020
    [30]
    JI Y Y, FAN F, WANG X H, et al. Broadband controllable terahertz quarter-wave plate based on graphene gratings with liquid crystals[J]. Optics Express, 2018, 26(10): 12852-12862. doi: 10.1364/OE.26.012852
    [31]
    PENG L, LI X F, JIANG X, et al. A novel THz half-wave polarization converter for cross-polarization conversions of both linear and circular polarizations and polarization conversion ratio regulating by graphene[J]. Journal of Lightwave Technology, 2018, 36(19): 4250-4258. doi: 10.1109/JLT.2018.2836904
    [32]
    YU X Y, GAO X, QIAO W, et al. Broadband tunable polarization converter realized by graphene-based metamaterial[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2399-2402. doi: 10.1109/LPT.2016.2596843
    [33]
    ZHANG Y, FENG Y J, ZHAO J M. Graphene-enabled tunable multifunctional metamaterial for dynamical polarization manipulation of broadband terahertz wave[J]. Carbon, 2020, 163: 244-252. doi: 10.1016/j.carbon.2020.03.001
    [34]
    BRAND G F. The strip grating as a circular polarizer[J]. American Journal of Physics, 2003, 71(5): 452-456. doi: 10.1119/1.1539099
    [35]
    GRADY N K, HEYES J E, CHOWDHURY D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399
    [36]
    LIU M, XU Q, CHEN X Y, et al. Temperature-controlled asymmetric transmission of electromagnetic waves[J]. Scientific Reports, 2019, 9(1): 4097. doi: 10.1038/s41598-019-40791-4
    [37]
    MARKOVICH D L, ANDRYIEUSKI A, ZALKOVSKIJ M, et al. Metamaterial polarization converter analysis: limits of performance[J]. Applied Physics B, 2013, 112(2): 143-152. doi: 10.1007/s00340-013-5383-8
    [38]
    WANG J, CHEN Y T, HAO J M, et al. Shape-dependent absorption characteristics of three-layered metamaterial absorbers at near-infrared[J]. Journal of Applied Physics, 2011, 109(7): 074510. doi: 10.1063/1.3573495
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(692) PDF downloads(153) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return