Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
YOU Ou-bo, GAO Wen-long, LIU Ya-chao, XIANG Yuan-jiang, ZHANG Shuang. Diverse surface waves supported by bianisotropic meta surfaces[J]. Chinese Optics, 2021, 14(4): 782-791. doi: 10.37188/CO.2021-0098
Citation: YOU Ou-bo, GAO Wen-long, LIU Ya-chao, XIANG Yuan-jiang, ZHANG Shuang. Diverse surface waves supported by bianisotropic meta surfaces[J]. Chinese Optics, 2021, 14(4): 782-791. doi: 10.37188/CO.2021-0098

Diverse surface waves supported by bianisotropic meta surfaces

doi: 10.37188/CO.2021-0098
More Information
  • Author Bio:

    YOU Ou-bo (1989—), male, born in Quzhou, Zhejiang Province. He received his bachelor and Ph.D. degrees in Department of Precision Instrument, Tsinghua University in 2017. Currently, he is a postdoc fellow in the Department of Physics at the University of Hong Kong. His main research interests include metamaterials and nanophotonics. E-mail: yououbo@hku.hk

    XIANG Yuan-jiang (1978—), male, born in Taizhou, Zhejiang Province. He received the M.S. degree in physics and microelectronics sciences and the Ph.D. degree in computer application technology from Hunan University, China, in 2006 and 2011, respectively. He is currently a Professor with Hunan University. His main research interest includes the transmission and control of light and electromagnetic waves. E-mail: xiangyuanjiang@126.com

    ZHANG Shuang (1975—), male, born in Dalian, Liaoning province. Currently, he is a chair professor in the Department of Physics and the Department of Electrical & Electronic Engineering at the University of Hong Kong. He received his Ph.D. degree in Electrical Engineering from the University of New Mexico in 2005, and elected as OSA member in 2016. He has made many important achievements in field of metamaterial. E-mail: shuzhang@hku.hk

  • Corresponding author: xiangyuanjiang@126.comshuzhang@hku.hk
  • Received Date: 01 May 2021
  • Rev Recd Date: 20 May 2021
  • Available Online: 31 May 2021
  • Publish Date: 01 Jul 2021
  • Surface waves supported by structured metallic surfaces, i.e.metasurfaces, have drawn wide attention recently.They are promising for various applications ranging from integrated photonic circuits to imaging and bio-sensing in various frequency regimes. In this work, we show that surface states with diverse polarization configurations can be supported by a metasurface consisting of a single layer of bianisotropic metamaterial elements.The structure possesses D2d symmetry, which includes mirror symmetry in the xz and yz plane, and C2 rotational symmetry along y = ±x axis. Due to this unique symmetry, the metasuface supports both transverse electric (TE) and transverse magnetic (TM) waves along kx and ky directions, while a purely longitudinal mode and an elliptically polarized transverse electromagnetic(TEM) mode along ky = ±kx directions. The versatility of the surface modes on the metasurface may lead to new surface wave phenomena and device applications.


  • loading
  • [1]
    ZAYATS A V, SMOLYANINOV I I, MARADUDIN A A. Nano-optics of surface plasmon polaritons[J]. Physics Reports, 2005, 408(3-4): 131-314. doi: 10.1016/j.physrep.2004.11.001
    BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi: 10.1038/nature01937
    PENDRY J B, MARTIN-MORENO L, GARCIA-VIDAL F J. Mimicking surface plasmons with structured surfaces[J]. Science, 2004, 305(5685): 847-848. doi: 10.1126/science.1098999
    HIBBINS A P, EVANS B R, SAMBLES J R. Experimental verification of designer surface plasmons[J]. Science, 2005, 308(5722): 670-672. doi: 10.1126/science.1109043
    GAN Q Q, FU ZH, DING Y J, et al. Ultrawide-band width slow-light system based on THz plasmonic graded metallic grating structures[J]. Physical Review Letters, 2008, 100(25): 256803. doi: 10.1103/PhysRevLett.100.256803
    GAN Q Q, DING Y J, BARTOLI F J. “Rainbow” trapping and releasing at telecommunication wavelengths[J]. Physical Review Letters, 2009, 102(5): 056801. doi: 10.1103/PhysRevLett.102.056801
    MAIER S A, ANDREWS S R, MARTÍN-MORENO L, et al. Terahertz surface plasmon-polariton propagation and focusing on periodically corrugated metal wires[J]. Physical Review Letters, 2006, 97(17): 176805. doi: 10.1103/PhysRevLett.97.176805
    ZHANG Y, XU Y H, TIAN CH X, et al. Terahertz spoof surface-plasmon-polariton subwavelength waveguide[J]. Photonics Research, 2018, 6(1): 18-23. doi: 10.1364/PRJ.6.000018
    XU W D, XIE L J, YING Y B. Mechanisms and applications of terahertz metamaterial sensing: a review[J]. Nanoscale, 2017, 9(37): 13864-13878. doi: 10.1039/C7NR03824K
    SHALTOUT A M, SHALAEV V M, BRONGERSMA M L. Spatiotemporal light control with active metasurfaces[J]. Science, 2019, 364(6441): eaat3100. doi: 10.1126/science.aat3100
    ZHANG X Y, LI Q, LIU F F, et al. Controlling angular dispersions in optical metasurfaces[J]. Light:Science &Applications, 2020, 9(1): 76.
    SUN SH L, HE Q, XIAO SH Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292
    NI X J, EMANI N K, KILDISHEV A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j
    GENEVET P, CAPASSO F, AIETA F, et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces[J]. Optica, 2017, 4(1): 139-152. doi: 10.1364/OPTICA.4.000139
    MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric Huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.201400584
    LIU L X, ZHANG X Q, KENNEY M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484
    GAO Y SH, FAN Y B, WANG Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061. doi: 10.1021/acs.nanolett.8b04311
    LI G X, CHEN SH M, PHOLCHAI N, et al. Continuous control of the nonlinearity phase for harmonic generations[J]. Nature Materials, 2015, 14(6): 607-612. doi: 10.1038/nmat4267
    KOSHELEV K, TANG Y T, LI K F, et al. Nonlinear metasurfaces governed by bound states in the continuum[J]. ACS Photonics, 2019, 6(7): 1639-1644. doi: 10.1021/acsphotonics.9b00700
    KRASNOK A, TYMCHENKO M, ALÙ A. Nonlinear metasurfaces: a paradigm shift in nonlinear optics[J]. Materials Today, 2018, 21(1): 8-21. doi: 10.1016/j.mattod.2017.06.007
    YE W M, ZEUNER F, LI X, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930. doi: 10.1038/ncomms11930
    CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. doi: 10.1038/ncomms2207
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808
    LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
    STAUDE I, SCHILLING J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 2017, 11(5): 274-284. doi: 10.1038/nphoton.2017.39
    ZHANG SH, FAN W J, MINHAS B K, et al. Midinfrared resonant magnetic nanostructures exhibiting a negative permeability[J]. Physical Review Letters, 2005, 94(3): 037402. doi: 10.1103/PhysRevLett.94.037402
    YAO J, LIU ZH W, LIU Y M, et al. Optical negative refraction in bulk metamaterials of nanowires[J]. Science, 2008, 321(5891): 930. doi: 10.1126/science.1157566
    HENTSCHEL M, SCHÄFERLING M, DUAN X Y, et al. Chiral plasmonics[J]. Science Advances, 2017, 3(5): e1602735. doi: 10.1126/sciadv.1602735
    ZHANG SH, PARK Y S, LI J, et al. Negative refractive index in chiral metamaterials[J]. Physical Review Letters, 2009, 102(2): 023901. doi: 10.1103/PhysRevLett.102.023901
    KANG L, WANG CH Y, GUO X X, et al. Nonlinear chiral meta-mirrors: enabling technology for ultrafast switching of light polarization[J]. Nano Letters, 2020, 20(3): 2047-2055. doi: 10.1021/acs.nanolett.0c00007
    ASADCHY V S, DÍAZ-RUBIO A, TRETYAKOV S A. Bianisotropic metasurfaces: physics and applications[J]. Nanophotonics, 2018, 7(6): 1069-1094. doi: 10.1515/nanoph-2017-0132
    DORRAH A H, ELEFTHERIADES G V. Bianisotropic Huygens’ metasurface pairs for nonlocal power-conserving wave transformations[J]. IEEE Antennas and Wireless Propagation Letters, 2018, 17(10): 1788-1792. doi: 10.1109/LAWP.2018.2866874
    YAZDI M, ALBOOYEH M, ALAEE R. A bianisotropic metasurface with resonant asymmetric absorption[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(7): 3004-3015. doi: 10.1109/TAP.2015.2423855
    WANG X CH, DÍAZ-RUBIO A, ASADCHY V S, et al. Extreme asymmetry in metasurfaces via evanescent fields engineering: angular-asymmetric absorption[J]. Physical Review Letters, 2018, 121(25): 256802. doi: 10.1103/PhysRevLett.121.256802
    GUO Q H, GAO W L, CHEN J, et al. Line degeneracy and strong spin-orbit coupling of light with bulk bianisotropic metamaterials[J]. Physical Review Letters, 2015, 115(6): 067402. doi: 10.1103/PhysRevLett.115.067402
    KHANIKAEV A B, MOUSAVI S H, TSE W K, et al. Photonic topological insulators[J]. Nature Materials, 2013, 12(3): 233-239. doi: 10.1038/nmat3520
    YANG B, GUO Q H, TREMAIN B, et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures[J]. Science, 2018, 359(6379): 1013-1016. doi: 10.1126/science.aaq1221
    JIA H W, ZHANG R X, GAO W L, et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials[J]. Science, 2019, 363(6423): 148-151. doi: 10.1126/science.aau7707
    YANG B, BI Y G, ZHANG R X, et al. Momentum space toroidal moment in a photonic metamaterial[J]. Nature Communications, 2021, 12(1): 1784. doi: 10.1038/s41467-021-22063-w
    PENG L, DUAN L F, WANG K W, et al. Transverse photon spin of bulk electromagnetic waves in bianisotropic media[J]. Nature Photonics, 2019, 13(12): 878-882. doi: 10.1038/s41566-019-0521-4
    XIA L B, YANG B, GUO Q H, et al. Simultaneous TE and TM designer surface plasmon supported by bianisotropic metamaterials with positive permittivity and permeability[J]. Nanophotonics, 2019, 8(8): 1357-1362. doi: 10.1515/nanoph-2019-0047
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(825) PDF downloads(114) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint