Volume 15 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
CAO Wen-jing, SUN Li-ze-tong, GUO Fu-zhou, SONG Jian-tong, LIU Xiao, CHEN Zhi-hui, YANG Yi-biao, SUN Fei. Enhancing the fluorescence emission by flexible metal-dielectric-metal structures[J]. Chinese Optics, 2022, 15(1): 144-160. doi: 10.37188/CO.2021-0084
Citation: CAO Wen-jing, SUN Li-ze-tong, GUO Fu-zhou, SONG Jian-tong, LIU Xiao, CHEN Zhi-hui, YANG Yi-biao, SUN Fei. Enhancing the fluorescence emission by flexible metal-dielectric-metal structures[J]. Chinese Optics, 2022, 15(1): 144-160. doi: 10.37188/CO.2021-0084

Enhancing the fluorescence emission by flexible metal-dielectric-metal structures

doi: 10.37188/CO.2021-0084
Funds:  Supported by National Natural Science Foundation of China (No. 62175178, No. 11674239); the Central Guidance on Local Science and Technology Development Fund of Shanxi Province (No. YDZJSX2021A013); Program for the Top Young Talents of Shanxi Province; Program for the Sanjin Outstanding Talents of China
More Information
  • Author Bio:

    Cao Wen-jing (1994—), female, born in Linfen, Shanxi Province, Master student. Received the bachelor degree from Taiyuan Normal University in 2018; Currently studying at Ministry of Education of New Sensor and Intelligent Control, Taiyuan University of Technology/Shanxi Key Laboratory, major in Condensed Matter Physics, mainly engaged in the research of micro-nano photonics.E-mail: cwjskr@126.com

    Chen Zhi-hui (1984—), male, born in Taiyuan, Shanxi Province. Doctor, professor and doctoral supervisor; Received the bachelor degree from Beijing University of Posts and Telecommunications in 2006 and the doctor degree from the Royal Swedish Institute of technology in 2012. Currently working in the Ministry of Education of New Sensor and Intelligent Control, Taiyuan University of Technology/Shanxi Key Laboratory, mainly engaged in research on micro nano photonics.E-mail: huixu@126.com

  • Corresponding author: huixu@126.com
  • Received Date: 19 Apr 2021
  • Accepted Date: 11 Aug 2021
  • Rev Recd Date: 11 May 2021
  • Available Online: 11 Aug 2021
  • Publish Date: 19 Jan 2022
  • The technology of enhancing fluorescence emission can increase the sensitivity of fluorescence detection and the brightness of Light Emitting Diodes (LEDs), and is of great significance in improving the performance of light-emitting devices. Since the metal structure has a good effect in enhancing the local field and fluorescence emission, and the flexible dielectric material has flexible bendability characteristics, on the basis of above, we propose a flexible structure composed of Metal-Dielectric-Metal (MDM) to enhance the fluorescence emission. The influence of the structure on the directional emission enhancement of quantum dots is systematically studied by using the finite difference time domain method. Theoretical calculations show that the local undulations and arcs of the flexible MDM structure can promote fluorescence enhancement and increase the quantum efficiency of the quantum dots located at the center of the structure by about 7 times. They can alao change the refractive index and thickness of the dielectric to achieve the tunability of the target wavelength. At the same time, the experimental results shows that the flexible MDM structure does have a positive effect on the fluorescence enhancement. This discovery is valuable for future display technologies and flexible light-emitting devices. It is of certain guiding significance for the development and application of high-efficiency flexible devices.


  • loading
  • [1]
    WANG Z B, HELANDER M G, QIU J, et al. Unlocking the full potential of organic light-emitting diodes on flexible plastic[J]. Nature Photonics, 2011, 5(12): 753-757. doi: 10.1038/nphoton.2011.259
    KIM W, KWON S, LEE S M, et al. Soft fabric-based flexible organic light-emitting diodes[J]. Organic Electronics, 2013, 14(11): 3007-3013. doi: 10.1016/j.orgel.2013.09.001
    HUANG W B, ZHANG X J, YANG T CH, et al. A mechanically bendable and conformally attachable polymer membrane microlaser array enabled by digital interference lithography[J]. Nanoscale, 2020, 12(12): 6736-6743. doi: 10.1039/C9NR10970F
    CHOUDHURY S D, BADUGU R, RAY K, et al. Steering fluorescence emission with metal-dielectric-metal structures of Au, Ag, and Al[J]. The Journal of Physical Chemistry C, 2013, 117(30): 15798-15807. doi: 10.1021/jp4051066
    GRANADOS J A O, THANGARASU P, SINGH N, et al. Tetracycline and its quantum dots for recognition of Al3+ and application in milk developing cells bio-imaging [J]. Food Chemistry, 2019, 278: 523-532. doi: 10.1016/j.foodchem.2018.11.086
    CHEN W L, LONG K D, YU H, et al. Enhanced live cell imaging via photonic crystal enhanced fluorescence microscopy [J]. Analyst, 2014, 139(22): 5954-5963. doi: 10.1039/C4AN01508H
    MCHUGH K J, JING L H, BEHRENS A M, et al. Biocompatible semiconductor quantum dots as cancer imaging agents[J]. Advanced Materials, 2018, 30(18): 1706356. doi: 10.1002/adma.201706356
    BHASIKUTTAN A C, MOHANTY J, NAU W M, et al. Efficient fluorescence enhancement and cooperative binding of an organic dye in a supra-biomolecular host-protein assembly[J]. Angewandte Chemie International Edition, 2007, 46(22): 4120-4122. doi: 10.1002/anie.200604757
    NANDIMATH M, BHAJANTRI R F, NAIK J. Spectroscopic and color chromaticity analysis of rhodamine 6G dye-doped PVA polymer composites for color tuning applications[J]. Polymer Bulletin, 2021, 78(8): 4569-4592. doi: 10.1007/s00289-020-03332-y
    NGO Q M, HO Y L D, PUGH J R, et al. Enhanced UV/blue fluorescent sensing using metal-dielectric-metal aperture nanoantenna arrays[J]. Current Applied Physics, 2018, 18(7): 793-798. doi: 10.1016/j.cap.2018.04.007
    LI D Y, ZHOU D L, XU W, et al. Plasmonic photonic crystals induced two-order fluorescence enhancement of blue perovskite nanocrystals and its application for high-performance flexible ultraviolet photodetectors[J]. Advanced Functional Materials, 2018, 28(41): 1804429. doi: 10.1002/adfm.201804429
    YAN Y ZH, ZENG Y, WU Y, et al. Ten-fold enhancement of ZnO thin film ultraviolet-luminescence by dielectric microsphere arrays[J]. Optics Express, 2014, 22(19): 23552-23564. doi: 10.1364/OE.22.023552
    JIANG J J, XIE Y B, LIU ZH Y, et al. Amplified spontaneous emission via the coupling between Fabry-Perot cavity and surface plasmon polariton modes[J]. Optics Letters, 2014, 39(8): 2378-2381. doi: 10.1364/OL.39.002378
    REN Y, LU Y H, ZANG T Y, et al. Fluorescence emission mediated by metal-dielectric-metal fishnet metasurface: spatially selective excitation and double enhancement[J]. Chinese Journal of Chemical Physics, 2019, 32(3): 349-356. doi: 10.1063/1674-0068/cjcp1807182
    CHOUDHURY S D, BADUGU R, NOWACZYK K, et al. Tuning fluorescence direction with plasmonic metal–dielectric–metal substrates[J]. The Journal of Physical Chemistry Letters, 2013, 4(1): 227-232. doi: 10.1021/jz301867b
    JUNG B Y, KIM N Y, LEE C H, et al. Optical properties of Fabry-Perot microcavity with organic light emitting materials[J]. Current Applied Physics, 2001, 1(2-3): 175-181. doi: 10.1016/S1567-1739(01)00006-2
    UDDIN S Z, TANVIR M R, TALUKDER M A. A proposal and a theoretical analysis of an enhanced surface plasmon coupled emission structure for single molecule detection[J]. Journal of Applied Physics, 2016, 119(20): 204701. doi: 10.1063/1.4952576
    CHOUDHURY S D, BADUGU R, RAY K, et al. Directional emission from metal-dielectric-metal structures: effect of mixed metal layers, dye location, and dielectric thickness[J]. The Journal of Physical Chemistry C, 2015, 119(6): 3302-3311. doi: 10.1021/jp512174w
    PALIK E D. Handbook of Optical Constants of Solids[M]. Orlando: Academic Press, 1985..
    LU G W, ZHANG T Y, LI W Q, et al. Single-molecule spontaneous emission in the vicinity of an individual gold nanorod[J]. The Journal of Physical Chemistry C, 2011, 115(32): 15822-15828. doi: 10.1021/jp203317d
    CHOU R Y, LU G W, SHEN H M, et al. A hybrid nanoantenna for highly enhanced directional spontaneous emission[J]. Journal of Applied Physics, 2014, 115(24): 244310. doi: 10.1063/1.4885422
    GRYCZYNSKI I, MALICKA J, NOWACZYK K, et al. Effects of sample thickness on the optical properties of surface plasmon-coupled emission[J]. The Journal of Physical Chemistry B, 2004, 108(32): 12073-12083. doi: 10.1021/jp0312619
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(816) PDF downloads(181) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint