Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
CAO Tun, LIU Kuan, LI Yang, LIAN Meng, HU Zi-xian, LIU Xuan, LI Gui-xin. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. doi: 10.37188/CO.2021-0080
Citation: CAO Tun, LIU Kuan, LI Yang, LIAN Meng, HU Zi-xian, LIU Xuan, LI Gui-xin. Tunable optical metamaterials and their applications[J]. Chinese Optics, 2021, 14(4): 968-985. doi: 10.37188/CO.2021-0080

Tunable optical metamaterials and their applications

doi: 10.37188/CO.2021-0080
More Information
  • Optical metamaterials are composed of array of artificial sub-wavelength resonators, exhibiting novel optical phenomena that not occur in natural materials. By using optical metamaterials, one can flexibly control the light propagation and realize fantastic optical phenomena such as negative refraction, cloaking and unidirectional transmission, etc. Traditional optical metamaterials usually have fixed geometric structures and unchanged material properties, which limits their capabilities of tuning optical responses. Recently, tunable optical metamaterials based on exceptional materials or structures have attracted much attention. In this review, we investigate the fundamentals of tunable optical metamaterials realized by either integrating the active materials (i.e., varactor diodes, liquid crystals, phase change materials, graphene, etc.) or reconstructing the resonators array (i.e., micro electromechanical systems, stretchable materials, etc.). We systematically summarize the progress in this area, analyze the features of tunable optical metamaterials under different control mechanisms, elaborate the challenges of tunable optical metamaterials facing in future applications, and predict the future development direction.


  • loading
  • [1]
    PENDRY J B, HOLDEN A J, STEWART W J, et al. Extremely low frequency plasmons in metallic mesostructures[J]. Physical Review Letters, 1996, 76(25): 4773-4776. doi: 10.1103/PhysRevLett.76.4773
    PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
    FANG N, LEE H, SUN CH, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759
    SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628
    LIU R, JI C, MOCK J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369. doi: 10.1126/science.1166949
    MA H F, CUI T J. Three-dimensional broadband ground-plane cloak made of metamaterials[J]. Nature Communications, 2010, 1(3): 21.
    ERGIN T, STENGER N, BRENNER P, et al. Three-dimensional invisibility cloak at optical wavelengths[J]. Science, 2010, 328(5976): 337-339. doi: 10.1126/science.1186351
    CUI T J, LI L L, LIU SH, et al. Information metamaterial systems[J]. iScience, 2020, 23(8): 101403. doi: 10.1016/j.isci.2020.101403
    ZHELUDEV N I, KIVSHAR Y S. From metamaterials to metadevices[J]. Nature Materials, 2012, 11(11): 917-924. doi: 10.1038/nmat3431
    REN ZH H, CHANG Y H, MA Y M, et al. Leveraging of MEMS technologies for optical metamaterials applications[J]. Advanced Optical Materials, 2020, 8(3): 1900653. doi: 10.1002/adom.201900653
    CHEN H T, TAYLOR A J, YU N F. A review of metasurfaces: physics and applications[J]. Reports on Progress in Physics, 2016, 79(7): 076401. doi: 10.1088/0034-4885/79/7/076401
    HE Q, SUN SH L, ZHOU L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 2019: 1849272.
    CHE Y H, WANG X T, SONG Q H, et al. Tunable optical metasurfaces enabled by multiple modulation mechanisms[J]. Nanophotonics, 2020, 9(15): 4407-4431. doi: 10.1515/nanoph-2020-0311
    CUI T, BAI B F, SUN H B. Tunable metasurfaces based on active materials[J]. Advanced Functional Materials, 2019, 29(10): 1806692. doi: 10.1002/adfm.201806692
    CHANG Y H, WEI J X, LEE C. Metamaterials-from fundamentals and MEMS tuning mechanisms to applications[J]. Nanophotonics, 2020, 9(10): 3049-3070. doi: 10.1515/nanoph-2020-0045
    MENG K, PARK S J, LI L H, et al. Tunable broadband terahertz polarizer using graphene-metal hybrid metasurface[J]. Optics Express, 2019, 27(23): 33768-33778. doi: 10.1364/OE.27.033768
    ZHANG J, WEI X ZH, RUKHLENKO I D, et al. Electrically tunable metasurface with independent frequency and amplitude modulations[J]. ACS Photonics, 2020, 7(1): 265-271. doi: 10.1021/acsphotonics.9b01532
    ARBABI E, ARBABI A, KAMALI S M, et al. MEMS-tunable dielectric metasurface lens[J]. Nature Communications, 2018, 9: 812. doi: 10.1038/s41467-018-03155-6
    LIU X B, WANG Q, ZHANG X Q, et al. Thermally dependent dynamic meta‐holography using a vanadium dioxide integrated metasurface[J]. Advanced Optical Materials, 2019, 7(12): 1900175. doi: 10.1002/adom.201900175
    KIM Y, WU P C, SOKHOYAN R, et al. Phase modulation with electrically tunable vanadium dioxide phase-change metasurfaces[J]. Nano Letters, 2019, 19(6): 3961-3968. doi: 10.1021/acs.nanolett.9b01246
    LEI D Y, APPAVOO K, LIGMAJER F, et al. Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure[J]. ACS Photonics, 2015, 2(9): 1306-1313. doi: 10.1021/acsphotonics.5b00249
    HAIL C U, MICHEL A K U, POULIKAKOS D, et al. Optical metasurfaces: evolving from passive to adaptive[J]. Advanced Optical Materials, 2019, 7(14): 1801786. doi: 10.1002/adom.201801786
    ZHONG M. A multi-band metamaterial absorber based on VO2 layer[J]. Optics &Laser Technology, 2021, 139: 106930.
    KATS M A, SHARMA D, LIN J, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101. doi: 10.1063/1.4767646
    SHU F ZH, YU F F, PENG R W, et al. Dynamic plasmonic color generation based on phase transition of vanadium dioxide[J]. Advanced Optical Materials, 2018, 6(7): 1700939. doi: 10.1002/adom.201700939
    HASHEMI M R M, YANG SH H, WANG T Y, et al. Electronically-controlled beam-steering through vanadium dioxide metasurfaces[J]. Scientific Reports, 2016, 6: 35439. doi: 10.1038/srep35439
    ZHU M, COJOCARU‐MIRÉDIN O, MIO A M, et al. Unique bond breaking in crystalline phase change materials and the quest for metavalent bonding[J]. Advanced Materials, 2018, 30(18): 1706735. doi: 10.1002/adma.201706735
    DING F, YANG Y Q, BOZHEVOLNYI S I. Dynamic metasurfaces using phase‐change chalcogenides[J]. Advanced Optical Materials, 2019, 7(14): 1801709. doi: 10.1002/adom.201801709
    JEONG Y G, BAHK Y M, KIM D S. Dynamic terahertz plasmonics enabled by phase-change materials[J]. Advanced Optical Materials, 2020, 8(3): 1900548. doi: 10.1002/adom.201900548
    WUTTIG M, YAMADA N. Phase-change materials for rewriteable data storage[J]. Nature Materials, 2007, 6(11): 824-832. doi: 10.1038/nmat2009
    CAO T, WANG R Z, SIMPSON R E, et al. Photonic Ge-Sb-Te phase change metamaterials and their applications[J]. Progress in Quantum Electronics, 2020, 74: 100299. doi: 10.1016/j.pquantelec.2020.100299
    CAO T, ZHANG L, SIMPSON R E, et al. Mid-infrared tunable polarization-independent perfect absorber using a phase-changing metamaterial[J]. Journal of the Optical Society of America B, 2013, 30(6): 1580-1585.
    GHOLIPOUR B, ZHANG J F, MACDONALD K F, et al. An all-optical, non-volatile, bidirectional, phase-change meta-switch[J]. Advanced Materials, 2013, 25(22): 3050-3054. doi: 10.1002/adma.201300588
    TITTL A, MICHEL A K U, SCHÄFERLING M, et al. A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability[J]. Advanced Materials, 2015, 27(31): 4597-4603. doi: 10.1002/adma.201502023
    QU Y R, LI Q, DU K K, et al. Dynamic thermal emission control based on ultrathin plasmonic metamaterials including phase-changing material GST[J]. Laser &Photonics Reviews, 2017, 11(5): 1700091.
    BEHERA J K, LIU K, LIAN M, et al. A reconfigurable hyperbolic metamaterial perfect absorber[J]. Nanoscale Advances, 2021, 3(6): 1758-1766. doi: 10.1039/D0NA00787K
    CAO T, LIU K, LU L, et al. Large-area broadband near-perfect absorption from a thin chalcogenide film coupled to gold nanoparticles[J]. ACS Applied Materials &Interfaces, 2019, 11(5): 5176-5182.
    JULIAN M N, WILLIAMS C, BORG S, et al. Reversible optical tuning of GeSbTe phase-change metasurface spectral filters for mid-wave infrared imaging[J]. Optica, 2020, 7(7): 746-754. doi: 10.1364/OPTICA.392878
    DE GALARRETA C R, SINEV I, ALEXEEV A M, et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces[J]. Optica, 2020, 7(5): 476-484. doi: 10.1364/OPTICA.384138
    WANG Y F, LANDREMAN P, SCHOEN D, et al. Electrical tuning of phase-change antennas and metasurfaces[J]. Nature Nanotechnology, 2021. doi: 10.1038/s41565-021-00882-8
    ZHANG Y F, FOWLER C, LIANG J H, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 2021. doi: 10.1038/s41565-021-00881-9
    HOSSEINI P, WRIGHT C D, BHASKARAN H. An optoelectronic framework enabled by low-dimensional phase-change films[J]. Nature, 2014, 511(7508): 206-211. doi: 10.1038/nature13487
    YOO S, GWON T, EOM T, et al. Multicolor changeable optical coating by adopting multiple layers of ultrathin phase change material film[J]. ACS Photonics, 2016, 3(7): 1265-1270. doi: 10.1021/acsphotonics.6b00246
    DE GALARRETA C R, ALEXEEV A M, AU Y Y, et al. Nonvolatile reconfigurable phase‐change metadevices for beam steering in the near infrared[J]. Advanced Functional Materials, 2018, 28(10): 1704993. doi: 10.1002/adfm.201704993
    BAI W, YANG P, HUANG J, et al. Near-infrared tunable metalens based on phase change material Ge2Sb2Te5[J]. Scientific Reports, 2019, 9(1): 5368. doi: 10.1038/s41598-019-41859-x
    STAUDE I, SCHILLING J. Metamaterial-inspired silicon nanophotonics[J]. Nature Photonics, 2017, 11(5): 274-284. doi: 10.1038/nphoton.2017.39
    HORIE Y, ARBABI A, ARBABI E, et al. High-speed, phase-dominant spatial light modulation with silicon-based active resonant antennas[J]. ACS Photonics, 2018, 5(5): 1711-1717. doi: 10.1021/acsphotonics.7b01073
    RAHMANI M, XU L, MIROSHNICHENKO A E, et al. Reversible thermal tuning of all-dielectric metasurfaces[J]. Advanced Functional Materials, 2017, 27(31): 1700580. doi: 10.1002/adfm.201700580
    NGUYEN Q M, ANTHONY T K, ZAGHLOUL A I. Free-Space-Impedance-Matched composite dielectric metamaterial with high refractive index[J]. IEEE Antennas and Wireless Propagation Letters, 2019, 18(12): 2751-2755. doi: 10.1109/LAWP.2019.2951122
    CHEN X, FAN W H. Tunable bound states in the continuum in all-dielectric terahertz metasurfaces[J]. Nanomaterials, 2020, 10(4): 623. doi: 10.3390/nano10040623
    ZHONG M, JIANG X T, ZHU X L, et al. Design and fabrication of a single metal layer tunable metamaterial absorber in THz range[J]. Optics &Laser Technology, 2020, 125: 106023.
    MA Z, MENG X, LIU X, et al. Liquid crystal enabled dynamic nanodevices[J]. Nanomaterials, 2018, 8(11): 871.
    SI G Y, ZHAO Y H, LEONG E S P, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317. doi: 10.3390/ma7021296
    KOMAR A, FANG ZH, BOHN J, et al. Electrically tunable all-dielectric optical metasurfaces based on liquid crystals[J]. Applied Physics Letters, 2017, 110(7): 071109. doi: 10.1063/1.4976504
    ATORF B, MÜHLENBERND H, MULDARISNUR M, et al. Electro-optic tuning of split ring resonators embedded in a liquid crystal[J]. Optics Letters, 2014, 39(5): 1129-1132. doi: 10.1364/OL.39.001129
    LI SH Q, XU X W, VEETIL R M, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    SHARMA M, HENDLER N, ELLENBOGEN T. Electrically switchable color tags based on active liquid‐crystal plasmonic metasurface platform[J]. Advanced Optical Materials, 2020, 8(7): 1901182. doi: 10.1002/adom.201901182
    FRANKLIN D, FRANK R, WU S T, et al. Actively addressed single pixel full-colour plasmonic display[J]. Nature Communications, 2017, 8: 15209. doi: 10.1038/ncomms15209
    AMER A A G, SAPUAN S Z, NASIMUDDIN N, et al. A comprehensive review of metasurface structures suitable for RF energy harvesting[J]. IEEE Access, 2020, 8: 76433-76452. doi: 10.1109/ACCESS.2020.2989516
    XU W R, SONKUSALE S. Microwave diode switchable metamaterial reflector/absorber[J]. Applied Physics Letters, 2013, 103(3): 031902. doi: 10.1063/1.4813750
    ZHANG L, CHEN X Q, LIU SH, et al. Space-time-coding digital metasurfaces[J]. Nature Communications, 2018, 9(1): 4334. doi: 10.1038/s41467-018-06802-0
    CUI T J, QI M Q, WAN X, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science &Applications, 2014, 3(10): e218.
    LI L L, SHUANG Y, MA Q, et al. Intelligent metasurface imager and recognizer[J]. Light:Science &Applications, 2019, 8: 97.
    LI L L, CUI T J, JI W, et al. Electromagnetic reprogrammable coding-metasurface holograms[J]. Nature Communications, 2017, 8(1): 197. doi: 10.1038/s41467-017-00164-9
    HUANG Y W, LEE H W H, SOKHOYAN R, et al. Gate-tunable conducting oxide metasurfaces[J]. Nano Letters, 2016, 16(9): 5319-5325. doi: 10.1021/acs.nanolett.6b00555
    SHIRMANESH G K, SOKHOYAN R, PALA R A, et al. Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability[J]. Nano Letters, 2018, 18(5): 2957-2963. doi: 10.1021/acs.nanolett.8b00351
    FOROUZMAND A, SALARY M M, INAMPUDI S, et al. A tunable multigate indium-tin-oxide-assisted all-dielectric metasurface[J]. Advanced Optical Materials, 2018, 6(7): 1701275. doi: 10.1002/adom.201701275
    PARK J, JEONG B G, KIM S I, et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications[J]. Nature Nanotechnology, 2021, 16(1): 69-76. doi: 10.1038/s41565-020-00787-y
    WANG F, ZHANG Y B, TIAN CH SH, et al. Gate-variable optical transitions in graphene[J]. Science, 2008, 320(5873): 206-209. doi: 10.1126/science.1152793
    LI Z Q, HENRIKSEN E A, JIANG Z, et al. Dirac charge dynamics in graphene by infrared spectroscopy[J]. Nature Physics, 2008, 4(7): 532-535. doi: 10.1038/nphys989
    YAO Y, SHANKAR R, KATS M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 2014, 14(11): 6526-6532. doi: 10.1021/nl503104n
    BONACCORSO F, SUN Z, HASAN T, et al. Graphene photonics and optoelectronics[J]. Nature Photonics, 2010, 4(9): 611-622. doi: 10.1038/nphoton.2010.186
    SHERROTT M C, HON P W C, FOUNTAINE K T, et al. Experimental demonstration of > 230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces[J]. Nano Letters, 2017, 17(5): 3027-3034. doi: 10.1021/acs.nanolett.7b00359
    FAN K B, SUEN J, WU X Y, et al. Graphene metamaterial modulator for free-space thermal radiation[J]. Optics Express, 2016, 24(22): 25189-25201. doi: 10.1364/OE.24.025189
    ZENG B B, HUANG ZH Q, SINGH A, et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging[J]. Light:Science &Applications, 2018, 7: 51.
    DABIDIAN N, DUTTA-GUPTA S, KHOLMANOV I, et al. Experimental demonstration of phase modulation and motion sensing using graphene-integrated metasurfaces[J]. Nano Letters, 2016, 16(6): 3607-3615. doi: 10.1021/acs.nanolett.6b00732
    CAI H L, HUANG Q P, HU X, et al. All‐optical and ultrafast tuning of terahertz plasmonic metasurfaces[J]. Advanced Optical Materials, 2018, 6(14): 1800143. doi: 10.1002/adom.201800143
    GU J Q, SINGH R, LIU X J, et al. Active control of electromagnetically induced transparency analogue in terahertz metamaterials[J]. Nature Communications, 2012, 3: 1151. doi: 10.1038/ncomms2153
    YANG Y M, KAMARAJU N, CAMPIONE S, et al. Transient GaAs plasmonic metasurfaces at terahertz frequencies[J]. ACS Photonics, 2017, 4(1): 15-21. doi: 10.1021/acsphotonics.6b00735
    SHCHERBAKOV M R, LIU SH, ZUBYUK V V, et al. Ultrafast all-optical tuning of direct-gap semiconductor metasurfaces[J]. Nature Communications, 2017, 8: 17. doi: 10.1038/s41467-017-00019-3
    YANG Y M, KELLEY K, SACHET E, et al. Femtosecond optical polarization switching using a cadmium oxide-based perfect absorber[J]. Nature Photonics, 2017, 11(6): 390-395. doi: 10.1038/nphoton.2017.64
    CHANANA A, LIU X J, ZHANG CH, et al. Ultrafast frequency-agile terahertz devices using methylammonium lead halide perovskites[J]. Science Advances, 2018, 4(5): eaar7353. doi: 10.1126/sciadv.aar7353
    MANJAPPA M, SRIVASTAVA Y K, SOLANKI A, et al. Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices[J]. Advanced Materials, 2017, 29(32): 1605881. doi: 10.1002/adma.201605881
    KUMAR A, SOLANKI A, MANJAPPA M, et al. Excitons in 2D perovskites for ultrafast terahertz photonic devices[J]. Science Advances, 2020, 6(8): eaax8821. doi: 10.1126/sciadv.aax8821
    BELOTELOV V I, KREILKAMP L E, AKIMOV I A, et al. Plasmon-mediated magneto-optical transparency[J]. Nature Communications, 2013, 4: 2128. doi: 10.1038/ncomms3128
    TAN ZH Y, FAN F, LI T F, et al. Magnetically active terahertz wavefront control and superchiral field in a magneto-optical Pancharatnam-Berry metasurface[J]. Optics Express, 2021, 29(2): 2037-2048. doi: 10.1364/OE.414004
    QIN J, DENG L J, KANG T T, et al. Switching the optical chirality in magnetoplasmonic metasurfaces using applied magnetic fields[J]. ACS Nano, 2020, 14(3): 2808-2816. doi: 10.1021/acsnano.9b05062
    ZUBRITSKAYA I, MACCAFERRI N, EZEIZA X I, et al. Magnetic control of the chiroptical plasmonic surfaces[J]. Nano Letters, 2018, 18(1): 302-307. doi: 10.1021/acs.nanolett.7b04139
    GUTRUF P, ZOU CH J, WITHAYACHUMNANKUL W, et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies[J]. ACS Nano, 2016, 10(1): 133-141. doi: 10.1021/acsnano.5b05954
    TSENG M L, YANG J, SEMMLINGER M, et al. Two-dimensional active tuning of an aluminum plasmonic array for full-spectrum response[J]. Nano Letters, 2017, 17(10): 6034-6039. doi: 10.1021/acs.nanolett.7b02350
    YOO D, JOHNSON T W, CHERUKULAPPURATH S, et al. Template-stripped tunable plasmonic devices on stretchable and rollable substrates[J]. ACS Nano, 2015, 9(11): 10647-10654. doi: 10.1021/acsnano.5b05279
    MORITS D, MORITS M, OVCHINNIKOV V, et al. Multifunctional stretchable metasurface for the THz range[J]. Journal of Optics, 2014, 16(3): 032001. doi: 10.1088/2040-8978/16/3/032001
    MALEK S C, EE H S, AGARWAL R. Strain multiplexed metasurface holograms on a stretchable substrate[J]. Nano Letters, 2017, 17(6): 3641-3645. doi: 10.1021/acs.nanolett.7b00807
    KAMALI S M, ARBABI A, ARBABI E, et al. Decoupling optical function and geometrical form using conformal flexible dielectric metasurfaces[J]. Nature Communications, 2016, 7: 11618. doi: 10.1038/ncomms11618
    SONG SH CH, MA X L, PU M B, et al. Actively tunable structural color rendering with tensile substrate[J]. Advanced Optical Materials, 2017, 5(9): 1600829. doi: 10.1002/adom.201600829
    ZHANG CH, JING J X, WU Y K, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418-1426. doi: 10.1021/acsnano.9b08228
    HUANG F M, BAUMBERG J J. Actively tuned plasmons on elastomerically driven Au nanoparticle dimers[J]. Nano Letters, 2010, 10(5): 1787-1792. doi: 10.1021/nl1004114
    CHEN W X, LIU W J, JIANG Y J, et al. Ultrasensitive, mechanically responsive optical metasurfaces via strain amplification[J]. ACS Nano, 2018, 12(11): 10683-10692. doi: 10.1021/acsnano.8b04889
    PRYCE I M, AYDIN K, KELAITA Y A, et al. Highly strained compliant optical metamaterials with large frequency tunability[J]. Nano Letters, 2010, 10(10): 4222-4227. doi: 10.1021/nl102684x
    LIU X, HUANG ZH, ZHU CH K, et al. Out-of-plane designed soft metasurface for tunable surface plasmon polariton[J]. Nano Letters, 2018, 18(2): 1435-1441. doi: 10.1021/acs.nanolett.7b05190
    GAO Y SH, FAN Y B, WANG Y J, et al. Nonlinear holographic all-dielectric metasurfaces[J]. Nano Letters, 2018, 18(12): 8054-8061. doi: 10.1021/acs.nanolett.8b04311
    WAN W W, GAO J, YANG X D. Metasurface holograms for holographic imaging[J]. Advanced Optical Materials, 2017, 5(21): 1700541. doi: 10.1002/adom.201700541
    KAMALI S M, ARBABI E, ARBABI A, et al. Highly tunable elastic dielectric metasurface lenses[J]. Laser &Photonics Reviews, 2016, 10(6): 1002-1008.
    SHE A L, ZHANG SH Y, SHIAN S, et al. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift[J]. Science Advances, 2018, 4(2): eaap9957. doi: 10.1126/sciadv.aap9957
    OPRIS D M. Polar elastomers as novel materials for electromechanical actuator applications[J]. Advanced Materials, 2018, 30(5): 1703678. doi: 10.1002/adma.201703678
    SKOV A L, YU L Y. Optimization techniques for improving the performance of silicone‐based dielectric elastomers[J]. Advanced Engineering Materials, 2018, 20(5): 1700762. doi: 10.1002/adem.201700762
    SHAH S I H, SARKAR A, PHON R, et al. Two‐dimensional electromechanically transformable metasurface with beam scanning capability using four independently controllable shape memory alloy axes[J]. Advanced Optical Materials, 2020, 8(22): 2001180. doi: 10.1002/adom.202001180
    ROY T, ZHANG SH Y, JUNG I W, et al. Dynamic metasurface lens based on MEMS technology[J]. APL Photonics, 2018, 3(2): 021302. doi: 10.1063/1.5018865
    LIU X L, PADILLA W J. Dynamic manipulation of infrared radiation with MEMS metamaterials[J]. Advanced Optical Materials, 2013, 1(8): 559-562. doi: 10.1002/adom.201300163
    FU Y H, LIU A Q, ZHU W M, et al. A micromachined reconfigurable metamaterial via reconfiguration of asymmetric split‐ring resonators[J]. Advanced Functional Materials, 2011, 21(18): 3589-3594. doi: 10.1002/adfm.201101087
    HU F R, QIAN Y X, LI ZH, et al. Design of a tunable terahertz narrowband metamaterial absorber based on an electrostatically actuated MEMS cantilever and split ring resonator array[J]. Journal of Optics, 2013, 15(5): 055101. doi: 10.1088/2040-8978/15/5/055101
    KAN T, ISOZAKI A, KANDA N, et al. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals[J]. Nature Communications, 2015, 6: 8422.
    ZHU W M, LIU A Q, ZHANG X M, et al. Switchable magnetic metamaterials using micromachining processes[J]. Advanced Materials, 2011, 23(15): 1792-1796. doi: 10.1002/adma.201004341
    REEVES J B, JAYNE R K, STARK T J, et al. Tunable infrared metasurface on a soft polymer scaffold[J]. Nano Letters, 2018, 18(5): 2802-2806. doi: 10.1021/acs.nanolett.7b05042
    ZHAO X G, SCHALCH J, ZHANG J D, et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies[J]. Optica, 2018, 5(3): 303-310. doi: 10.1364/OPTICA.5.000303
    NAIK G V, SCHROEDER J L, NI X J, et al. Titanium nitride as a plasmonic material for visible and near-infrared wavelengths[J]. Optical Materials Express, 2012, 2(4): 478-489. doi: 10.1364/OME.2.000478
    BANG S, KIM J, YOON G, et al. Recent advances in tunable and reconfigurable metamaterials[J]. Micromachines, 2018, 9(11): 560. doi: 10.3390/mi9110560
    KANG L, JENKINS R P, WERNER D H. Recent progress in active optical metasurfaces[J]. Advanced Optical Materials, 2019, 7(14): 1801813. doi: 10.1002/adom.201801813
    ZHANG X G, JIANG W X, JIANG H L, et al. An optically driven digital metasurface for programming electromagnetic functions[J]. Nature Electronics, 2020, 3(3): 165-171. doi: 10.1038/s41928-020-0380-5
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(1456) PDF downloads(349) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint