Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
SU Zhao-xian, YAO En-xu, HUANG Ling-ling, WANG Yong-tian. Optical topological characteristics of two dimensional artificial metamaterials[J]. Chinese Optics, 2021, 14(4): 955-967. doi: 10.37188/CO.2021-0074
Citation: SU Zhao-xian, YAO En-xu, HUANG Ling-ling, WANG Yong-tian. Optical topological characteristics of two dimensional artificial metamaterials[J]. Chinese Optics, 2021, 14(4): 955-967. doi: 10.37188/CO.2021-0074

Optical topological characteristics of two dimensional artificial metamaterials

doi: 10.37188/CO.2021-0074
Funds:  Supported by the Beijing Outstanding Young Scientist Program (No. BJJWZYJH01201910007022); National Natural Science Foundation of China (No. 61775019, No. 92050117); National Postdoctoral Program for Innovative Talents of China (No. BX20200050)
More Information
  • Corresponding author: huanglingling@bit.edu.cn
  • Received Date: 06 Apr 2021
  • Rev Recd Date: 19 Apr 2021
  • Available Online: 19 May 2021
  • Publish Date: 01 Jul 2021
  • Two dimensional artificial metamaterials, represented by metasurfaces, could control the amplitude, phase, polarization and orbital angular momentum of light, through tailoring the interaction between light and matter. Nowadays, two dimensional artificial metamaterials with nontrivial topological properties have become research focus in optics due to their advantages in robust unidirectional transmission. The topological phase is not only a new degree of freedom to describe matter in the field of condensed matter physics, but also a new parameter to describe optical properties of artificial metamaterials. In this review, the origin of topological photonics and classification for topological properties of two dimensional metamaterials are introduced. The latest progress in topological photonics has also been presented. The summary and prospect of topological metamaterials are given at the end of the review.

     

  • loading
  • [1]
    LIU Y M, ZHANG X. Metamaterials: a new frontier of science and technology[J]. Chemical Society Reviews, 2011, 40(5): 2494-2507. doi: 10.1039/c0cs00184h
    [2]
    MINOVICH A E, MIROSHNICHENKO A E, BYKOV A Y, et al. Functional and nonlinear optical metasurfaces[J]. Laser &Photonics Reviews, 2015, 9(2): 195-213.
    [3]
    YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13: 139. doi: 10.1038/nmat3839
    [4]
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    [5]
    LEE J, TYMCHENKO M, ARGYROPOULOS C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 2014, 511(7507): 65-69. doi: 10.1038/nature13455
    [6]
    KILDISHEV A V, BOLTASSEVA A, SHALAEV V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009
    [7]
    LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213
    [8]
    LU L, JOANNOPOULOS J D, SOLJAČIĆ M. Topological photonics[J]. Nature Photonics, 2014, 8(11): 821-829. doi: 10.1038/nphoton.2014.248
    [9]
    OZAWA T, PRICE H M, AMO A, et al. Topological photonics[J]. Reviews of Modern Physics, 2019, 91(1): 015006. doi: 10.1103/RevModPhys.91.015006
    [10]
    THOULESS D J, KOHMOTO M, NIGHTINGALE M P, et al. Quantized hall conductance in a two-dimensional periodic potential[J]. Physical Review Letters, 1982, 49(6): 405-408. doi: 10.1103/PhysRevLett.49.405
    [11]
    KANE C L, MELE E J. Z 2 topological order and the quantum spin Hall effect[J]. Physical Review Letters, 2005, 95(14): 146802. doi: 10.1103/PhysRevLett.95.146802
    [12]
    KANE C L, MELE E J. Quantum spin Hall effect in graphene[J]. Physical Review Letters, 2005, 95(22): 226801. doi: 10.1103/PhysRevLett.95.226801
    [13]
    BERNEVIG B A, HUGHES T L, ZHANG SH CH. Quantum spin Hall effect and topological phase transition in HgTe quantum wells[J]. Science, 2006, 314(5806): 1757-1761. doi: 10.1126/science.1133734
    [14]
    BERNEVIG B A, ZHANG SH CH. Quantum spin Hall effect[J]. Physical Review Letters, 2006, 96(10): 106802. doi: 10.1103/PhysRevLett.96.106802
    [15]
    HASAN M Z, KANE C L. Colloquium: topological insulators[J]. Reviews of Modern Physics, 2010, 82(4): 3045-3067. doi: 10.1103/RevModPhys.82.3045
    [16]
    QI X L, ZHANG SH CH. Topological insulators and superconductors[J]. Reviews of Modern Physics, 2011, 83(4): 1057-1110. doi: 10.1103/RevModPhys.83.1057
    [17]
    HALDANE F D M, RAGHU S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry[J]. Physical Review Letters, 2008, 100(1): 013904. doi: 10.1103/PhysRevLett.100.013904
    [18]
    HATSUGAI Y. Chern number and edge states in the integer quantum Hall effect[J]. Physical Review Letters, 1993, 71(22): 3697-3700. doi: 10.1103/PhysRevLett.71.3697
    [19]
    FUKUI T, HATSUGAI Y, SUZUKI H. Chern numbers in discretized brillouin zone: efficient method of computing (Spin) hall conductances[J]. Journal of the Physical Society of Japan, 2005, 74(6): 1674-1677. doi: 10.1143/JPSJ.74.1674
    [20]
    RAGHU S, HALDANE F D M. Analogs of quantum-Hall-effect edge states in photonic crystals[J]. Physical Review A, 2008, 78(3): 033834. doi: 10.1103/PhysRevA.78.033834
    [21]
    WANG ZH, CHONG Y D, JOANNOPOULOS J D, et al. Observation of unidirectional backscattering-immune topological electromagnetic states[J]. Nature, 2009, 461(7265): 772-775. doi: 10.1038/nature08293
    [22]
    WANG ZH, CHONG Y D, JOANNOPOULOS J D, et al. Reflection-free one-way edge modes in a gyromagnetic photonic crystal[J]. Physical Review Letters, 2008, 100(1): 013905. doi: 10.1103/PhysRevLett.100.013905
    [23]
    SKIRLO S A, LU L, SOLJAČIĆ M. Multimode one-way waveguides of large chern numbers[J]. Physical Review Letters, 2014, 113(11): 113904. doi: 10.1103/PhysRevLett.113.113904
    [24]
    SKIRLO S A, LU L, IGARASHI Y, et al. Experimental observation of large chern numbers in photonic crystals[J]. Physical Review Letters, 2015, 115(25): 253901. doi: 10.1103/PhysRevLett.115.253901
    [25]
    FANG CH, LU L, LIU J W, et al. Topological semimetals with helicoid surface states[J]. Nature Physics, 2016, 12(10): 936-941. doi: 10.1038/nphys3782
    [26]
    FU L, KANE C L. Topological insulators with inversion symmetry[J]. Physical Review B, 2007, 76(4): 045302. doi: 10.1103/PhysRevB.76.045302
    [27]
    YU R, QI X L, BERNEVIG A, et al. Equivalent expression of Z 2 topological invariant for band insulators using the non-Abelian Berry connection[J]. Physical Review B, 2011, 84(7): 075119. doi: 10.1103/PhysRevB.84.075119
    [28]
    HAFEZI M, MITTAL S, FAN J, et al. Imaging topological edge states in silicon photonics[J]. Nature Photonics, 2013, 7(12): 1001-1005. doi: 10.1038/nphoton.2013.274
    [29]
    HAFEZI M, DEMLER E A, LUKIN M D, et al. Robust optical delay lines with topological protection[J]. Nature Physics, 2011, 7(11): 907-912. doi: 10.1038/nphys2063
    [30]
    HARARI G, BANDRES M A, LUMER Y, et al. Topological insulator laser: theory[J]. Science, 2018, 359(6381): eaar4003. doi: 10.1126/science.aar4003
    [31]
    BANDRES M A, WITTEK S, HARARI G, et al. Topological insulator laser: experiments[J]. Science, 2018, 359(6381): eaar4005. doi: 10.1126/science.aar4005
    [32]
    WU L H, HU X. Scheme for achieving a topological photonic crystal by using dielectric material[J]. Physical Review Letters, 2015, 114(22): 223901. doi: 10.1103/PhysRevLett.114.223901
    [33]
    WU L H, HU X. Topological properties of electrons in honeycomb lattice with detuned hopping energy[J]. Scientific Reports, 2016, 6: 24347. doi: 10.1038/srep24347
    [34]
    YANG Y T, XU Y F, XU T, et al. Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials[J]. Physical Review Letters, 2018, 120(21): 217401. doi: 10.1103/PhysRevLett.120.217401
    [35]
    ZHANG ZH W, WEI Q, CHENG Y, et al. Topological creation of acoustic pseudospin multipoles in a flow-free symmetry-broken metamaterial lattice[J]. Physical Review Letters, 2017, 118(8): 084303. doi: 10.1103/PhysRevLett.118.084303
    [36]
    GORLACH M A, NI X, SMIRNOVA D A, et al. Far-field probing of leaky topological states in all-dielectric metasurfaces[J]. Nature Communications, 2018, 9(1): 909. doi: 10.1038/s41467-018-03330-9
    [37]
    SHAO Z K, CHEN H ZH, WANG S, et al. A high-performance topological bulk laser based on band-inversion-induced reflection[J]. Nature Nanotechnology, 2020, 15(1): 67-72. doi: 10.1038/s41565-019-0584-x
    [38]
    SMIRNOVA D, KRUK S, LEYKAM D, et al. Third-harmonic generation in photonic topological metasurfaces[J]. Physical Review Letters, 2019, 123(10): 103901. doi: 10.1103/PhysRevLett.123.103901
    [39]
    PROCTOR M, CRASTER R V, MAIER S A, et al. Exciting pseudospin-dependent edge states in plasmonic metasurfaces[J]. ACS Photonics, 2019, 6(11): 2985-2995. doi: 10.1021/acsphotonics.9b01192
    [40]
    LEE J, MAK K F, SHAN J. Electrical control of the valley Hall effect in bilayer MoS2 transistors[J]. Nature Nanotechnology, 2016, 11(5): 421-425. doi: 10.1038/nnano.2015.337
    [41]
    MAK K F, MCGILL K L, PARK J, et al. Valleytronics. The valley Hall effect in MoS2 transistors[J]. Science, 2014, 344(6191): 1489-1492. doi: 10.1126/science.1250140
    [42]
    SCHAIBLEY J R, YU H Y, CLARK G, et al. Valleytronics in 2D materials[J]. Nature Reviews Materials, 2016, 1(11): 16055. doi: 10.1038/natrevmats.2016.55
    [43]
    DONG J W, CHEN X D, ZHU H Y, et al. Valley photonic crystals for control of spin and topology[J]. Nature Materials, 2017, 16(3): 298-302. doi: 10.1038/nmat4807
    [44]
    HE X T, LIANG E T, YUAN J J, et al. A silicon-on-insulator slab for topological valley transport[J]. Nature Communications, 2019, 10(1): 872. doi: 10.1038/s41467-019-08881-z
    [45]
    YANG Y H, YAMAGAMI Y, YU X B, et al. Terahertz topological photonics for on-chip communication[J]. Nature Photonics, 2020, 14(7): 446-451. doi: 10.1038/s41566-020-0618-9
    [46]
    GONG Y K, WONG S, BENNETT A J, et al. Topological insulator laser using valley-hall photonic crystals[J]. ACS Photonics, 2020, 7(8): 2089-2097. doi: 10.1021/acsphotonics.0c00521
    [47]
    WU X X, MENG Y, TIAN J X, et al. Direct observation of valley-polarized topological edge states in designer surface plasmon crystals[J]. Nature Communications, 2017, 8(1): 1304. doi: 10.1038/s41467-017-01515-2
    [48]
    KANG Y H, NI X, CHENG X J, et al. Pseudo-spin-valley coupled edge states in a photonic topological insulator[J]. Nature Communications, 2018, 9(1): 3029. doi: 10.1038/s41467-018-05408-w
    [49]
    GAO F, XUE H R, YANG ZH J, et al. Topologically protected refraction of robust kink states in valley photonic crystals[J]. Nature Physics, 2018, 14(2): 140-144. doi: 10.1038/nphys4304
    [50]
    MA T, SHVETS G. All-Si valley-Hall photonic topological insulator[J]. New Journal of Physics, 2016, 18(2): 025012. doi: 10.1088/1367-2630/18/2/025012
    [51]
    NOH J, HUANG SH, CHEN K P, et al. Observation of photonic topological valley hall edge states[J]. Physical Review Letters, 2018, 120(6): 063902. doi: 10.1103/PhysRevLett.120.063902
    [52]
    GAO ZH, YANG ZH J, GAO F, et al. Valley surface-wave photonic crystal and its bulk/edge transport[J]. Physical Review B, 2017, 96(20): 201402. doi: 10.1103/PhysRevB.96.201402
    [53]
    NI X, PURTSELADZE D, SMIRNOVA D A, et al. Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators[J]. Science Advances, 2018, 4(5): eaap8802. doi: 10.1126/sciadv.aap8802
    [54]
    CHEN W J, XIAO M, CHAN C T. Photonic crystals possessing multiple Weyl points and the experimental observation of robust surface states[J]. Nature Communications, 2016, 7: 13038. doi: 10.1038/ncomms13038
    [55]
    LU L, FU L, JOANNOPOULOS J D, et al. Weyl points and line nodes in gyroid photonic crystals[J]. Nature Photonics, 2013, 7(4): 294-299. doi: 10.1038/nphoton.2013.42
    [56]
    LI F, HUANG X Q, LU J Y, et al. Weyl points and Fermi arcs in a chiral phononic crystal[J]. Nature Physics, 2017, 14(1): 30-34.
    [57]
    YANG Z J, ZHANG B L. Acoustic type-II weyl nodes from stacking dimerized chains[J]. Physical Review Letters, 2016, 117(22): 224301. doi: 10.1103/PhysRevLett.117.224301
    [58]
    LU L, WANG ZH Y, YE D X, et al. Experimental observation of Weyl points[J]. Science, 2015, 349(6248): 622-624. doi: 10.1126/science.aaa9273
    [59]
    YANG B, GUO Q H, TREMAIN B, et al. Ideal Weyl points and helicoid surface states in artificial photonic crystal structures[J]. Science, 2018, 359(6379): 1013-1016. doi: 10.1126/science.aaq1221
    [60]
    YUAN L Q, LIN Q, XIAO M, et al. Synthetic dimension in photonics[J]. Optica, 2018, 5(11): 1369-1405.
    [61]
    JIAN CH M, XU C K. Interacting topological insulators with synthetic dimensions[J]. Physical Review X, 2018, 8(4): 041030. doi: 10.1103/PhysRevX.8.041030
    [62]
    LI Q C, JIANG X Y. Singularity induced topological transition of different dimensions in one synthetic photonic system[J]. Optics Communications, 2019, 440: 32-40. doi: 10.1016/j.optcom.2019.02.015
    [63]
    YUAN L Q, XIAO M, LIN Q, et al. Synthetic space with arbitrary dimensions in a few rings undergoing dynamic modulation[J]. Physical Review B, 2018, 97(10): 104105. doi: 10.1103/PhysRevB.97.104105
    [64]
    CHALOPIN T, SATOOR T, EVRARD A, et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system[J]. Nature Physics, 2020, 16(10): 1017-1021. doi: 10.1038/s41567-020-0942-5
    [65]
    LUO X W, ZHANG J, ZHANG CH W. Tunable flux through a synthetic Hall tube of neutral fermions[J]. Physical Review A, 2020, 102(6): 063327. doi: 10.1103/PhysRevA.102.063327
    [66]
    WANG Q, XIAO M, LIU H, et al. Optical interface states protected by synthetic Weyl points[J]. Physical Review X, 2017, 7(3): 031032. doi: 10.1103/PhysRevX.7.031032
    [67]
    LIN Q, XIAO M, YUAN L Q, et al. Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension[J]. Nature Communications, 2016, 7: 13731. doi: 10.1038/ncomms13731
    [68]
    YUAN L Q, SHI Y, FAN SH H. Photonic gauge potential in a system with a synthetic frequency dimension[J]. Optics Letters, 2016, 41(4): 741-744. doi: 10.1364/OL.41.000741
    [69]
    LIN Q, SUN X Q, XIAO M, et al. A three-dimensional photonic topological insulator using a two-dimensional ring resonator lattice with a synthetic frequency dimension[J]. Science Advances, 2018, 4(10): eaat2774. doi: 10.1126/sciadv.aat2774
    [70]
    OZAWA T, PRICE H M, GOLDMAN N, et al. Synthetic dimensions in integrated photonics: from optical isolation to four-dimensional quantum Hall physics[J]. Physical Review A, 2016, 93(4): 043827. doi: 10.1103/PhysRevA.93.043827
    [71]
    MINKOV M, SAVONA V. Haldane quantum Hall effect for light in a dynamically modulated array of resonators[J]. Optica, 2016, 3(2): 200-206. doi: 10.1364/OPTICA.3.000200
    [72]
    MIDYA B, ZHAO H, FENG L. Non-Hermitian photonics promises exceptional topology of light[J]. Nature Communications, 2018, 9(1): 2674. doi: 10.1038/s41467-018-05175-8
    [73]
    ZHANG L, YANG Y H, LIN ZH K, et al. Higher-order topological states in surface-wave photonic crystals[J]. Advanced Science, 2020, 7(6): 1902724. doi: 10.1002/advs.201902724
    [74]
    BENALCAZAR W A, BERNEVIG B A, HUGHES T L. Quantized electric multipole insulators[J]. Science, 2017, 357(6346): 61-66. doi: 10.1126/science.aah6442
    [75]
    SERRA-GARCIA M, PERI V, SÜSSTRUNK R, et al. Observation of a phononic quadrupole topological insulator[J]. Nature, 2018, 555(7696): 342-345. doi: 10.1038/nature25156
    [76]
    ZHANG W X, XIE X, HAO H M, et al. Low-threshold topological nanolasers based on the second-order corner state[J]. Light:Science &Applications, 2020, 9: 109.
    [77]
    XIE B Y, SU G X, WANG H F, et al. Higher-order quantum spin Hall effect in a photonic crystal[J]. Nature Communications, 2020, 11(1): 3768. doi: 10.1038/s41467-020-17593-8
    [78]
    XIE B Y, WANG H F, WANG H X, et al. Second-order photonic topological insulator with corner states[J]. Physical Review B, 2018, 98(20): 205147. doi: 10.1103/PhysRevB.98.205147
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article views(1768) PDF downloads(269) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return