Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LI Hao, HU De-jiao, QIN Fei, LI Xiang-ping. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 2021, 14(4): 851-866. doi: 10.37188/CO.2021-0069
Citation: LI Hao, HU De-jiao, QIN Fei, LI Xiang-ping. Principle and application of metasurface optical field modulation of atomic layer thickness[J]. Chinese Optics, 2021, 14(4): 851-866. doi: 10.37188/CO.2021-0069

Principle and application of metasurface optical field modulation of atomic layer thickness

doi: 10.37188/CO.2021-0069
Funds:  Supported by National Key Research and Development Program of China (No. 2018YFB1107200); National Natural Science Foundation of China (No. 61705084); Innovation and Entrepreneurship Project of Guangdong Province (No. 2016ZT06D081)
More Information
  • Corresponding author: xiangpingli@jnu.edu.cn
  • Received Date: 29 Mar 2021
  • Rev Recd Date: 16 Apr 2021
  • Available Online: 17 Jun 2021
  • Publish Date: 01 Jul 2021
  • Metasurfaces, composed of subwavelength-scale artificial nanostructures, can realize the versatile modulation of multiple attributes of light such as amplitude, phase and polarization, providing an excellent platform for nanophotonic devices. As a new type of layered material, 2D materials manifest peculiar optical and electrical properties compared to 3D bulk materials. The combination of 2D materials with metasurfaces offers new possibilities for the development of nanoscale planar optical devices. This paper reviews the development of metasurfaces based on 2D materials with atomic thicknesses, introduces the mechanism of light field modulation of various 2D material metasurfaces. An outlook on the challenges and potential applications for the development of atomic layer thickness metasurfaces are provided finally.


  • loading
  • [1]
    ENKRICH C, WEGENER M, LINDEN S, et al. Magnetic metamaterials at telecommunication and visible frequencies[J]. Physical Review Letters, 2005, 95(20): 203901. doi: 10.1103/PhysRevLett.95.203901
    VALENTINE J, ZHANG SH, ZENTGRAF T, et al. Three-dimensional optical metamaterial with a negative refractive index[J]. Nature, 2008, 455(7211): 376-379. doi: 10.1038/nature07247
    WANG L Y, SMITH K W, DOMINGUEZ-MEDINA S, et al. Circular differential scattering of single chiral self-assembled gold nanorod dimers[J]. ACS Photonics, 2015, 2(11): 1602-1610. doi: 10.1021/acsphotonics.5b00395
    YU N F, GENEVET P, AIETA F, et al. Flat optics: controlling wavefronts with optical antenna metasurfaces[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19(3): 4700423. doi: 10.1109/JSTQE.2013.2241399
    KUMAR K, DUAN H G, HEGDE R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi: 10.1038/nnano.2012.128
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807
    CLAUSEN J S, HØJLUND-NIELSEN E, CHRISTIANSEN A B, et al. Plasmonic metasurfaces for coloration of plastic consumer products[J]. Nano Letters, 2014, 14(8): 4499-4504. doi: 10.1021/nl5014986
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    YU N F, AIETA F, GENEVET P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u
    CHEN W T, YANG K Y, WANG C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi: 10.1021/nl403811d
    GAO L H, CHENG Q, YANG J, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light:Science &Applications, 2015, 4(9): e324.
    MUELLER J P B, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    DENG Z L, JIN M K, YE X, et al. Full‐color complex‐amplitude vectorial holograms based on multi‐freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610
    LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
    SUN SH L, YANG K Y, WANG C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    DENG J, YANG Y, TAO J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237-9246. doi: 10.1021/acsnano.9b03738
    AIETA F, GENEVET P, KATS M A, et al. Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(9): 4932-4936. doi: 10.1021/nl302516v
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
    TORRIJOS-MORÁN L, GRIOL A, GARCÍA-RUPÉREZ J. Slow light bimodal interferometry in one-dimensional photonic crystal waveguides[J]. Light:Science &Applications, 2021, 10(1): 16.
    SUN W J, HE Q, SUN SH L, et al. High-efficiency surface plasmon meta-couplers: concept and microwave-regime realizations[J]. Light:Science &Applications, 2016, 5(1): e16003.
    XU T, ZHAO Y H, GAN D CH, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501. doi: 10.1063/1.2894183
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j
    PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
    BIENER G, NIV A, KLEINER V, et al. Formation of helical beams by use of Pancharatnam–Berry phase optical elements[J]. Optics Letters, 2002, 27(21): 1875-1877. doi: 10.1364/OL.27.001875
    SUN SH L, HE Q, XIAO SH Y, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292
    DECKER M, STAUDE I, FALKNER M, et al. High-efficiency dielectric huygens’ surfaces[J]. Advanced Optical Materials, 2015, 3(6): 813-820. doi: 10.1002/adom.201400584
    ARBABI A, HORIE Y, BAGHERI M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi: 10.1038/nnano.2015.186
    LIN J, GENEVET P, KATS M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274. doi: 10.1021/nl402039y
    DENG Z L, DENG J H, ZHUANG X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885-2892. doi: 10.1021/acs.nanolett.8b00047
    KHORASANINEJAD M, AMBROSIO A, KANHAIYA P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258. doi: 10.1126/sciadv.1501258
    BHASU V C J, SATHYANARAYANA D N, PATEL C C, et al. Proceedings of the Indian academy of sciences—section A—volume 88–1979[J]. Proceedings of the Indian Academy of Sciences-Chemical Sciences, 1979, 88(4): 333.
    BERRY M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1984, 392(1802): 45-57.
    LIN D M, FAN P Y, HASMAN E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213
    HUANG L J, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4(1): 2808. doi: 10.1038/ncomms3808
    TAN S J, ZHANG L, ZHU D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029. doi: 10.1021/nl501460x
    LUO X G, PU M B, MA X L, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.
    LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics,Mechanics &Astronomy, 2015, 58(9): 594201.
    WEST P R, STEWART J L, KILDISHEV A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212
    LALANNE P, ASTILEAN S, CHAVEL P, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081
    KHORASANINEJAD M, CHEN W T, DEVLIN R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644
    BROWN B R, LOHMANN A W. Complex spatial filtering with binary masks[J]. Applied Optics, 1966, 5(6): 967-969. doi: 10.1364/AO.5.000967
    GEIM A K, NOVOSELOV K S. The rise of graphene[J]. Nature Materials, 2007, 6(3): 183-191. doi: 10.1038/nmat1849
    WANG Q H, KALANTAR-ZADEH K, KIS A, et al. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides[J]. Nature Nanotechnology, 2012, 7(11): 699-712. doi: 10.1038/nnano.2012.193
    MAK K F, LEE C, HONE J, et al. Atomically thin MoS2: a new direct-gap semiconductor[J]. Physical Review Letters, 2010, 105(13): 136805. doi: 10.1103/PhysRevLett.105.136805
    PAKDEL A, BANDO Y, GOLBERG D. Nano boron nitride flatland[J]. Chemical Society Reviews, 2014, 43(3): 934-959. doi: 10.1039/C3CS60260E
    DEAN C R, YOUNG A F, MERIC I, et al. Boron nitride substrates for high-quality graphene electronics[J]. Nature Nanotechnology, 2010, 5(10): 722-726. doi: 10.1038/nnano.2010.172
    HULTGREN R, GINGRICH N S, WARREN B E. The atomic distribution in red and black phosphorus and the crystal structure of black phosphorus[J]. The Journal of Chemical Physics, 1935, 3(6): 351-355. doi: 10.1063/1.1749671
    SPLENDIANI A, SUN L, ZHANG Y B, et al. Emerging photoluminescence in monolayer MoS2[J]. Nano Letters, 2010, 10(4): 1271-1275. doi: 10.1021/nl903868w
    MAK K F, HE K L, SHAN J, et al. Control of valley polarization in monolayer MoS2 by optical helicity[J]. Nature Nanotechnology, 2012, 7(8): 494-498. doi: 10.1038/nnano.2012.96
    YE Z L, CAO T, O’BRIEN K, et al. Probing excitonic dark states in single-layer tungsten disulphide[J]. Nature, 2014, 513(7517): 214-218. doi: 10.1038/nature13734
    WU Y Q, JENKINS K A, VALDES-GARCIA A, et al. State-of-the-art graphene high-frequency electronics[J]. Nano Letters, 2012, 12(6): 3062-3067. doi: 10.1021/nl300904k
    BALANDIN A A, GHOSH S, BAO W ZH, et al. Superior thermal conductivity of single-layer graphene[J]. Nano Letters, 2008, 8(3): 902-907. doi: 10.1021/nl0731872
    WILSON J A, YOFFE A D. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties[J]. Advances in Physics, 1969, 18(73): 193-335. doi: 10.1080/00018736900101307
    VERRE R, BARANOV D G, MUNKHBAT B, et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators[J]. Nature Nanotechnology, 2019, 14(7): 679-683. doi: 10.1038/s41565-019-0442-x
    LIU CH H, ZHENG J J, COLBURN S, et al. Ultrathin van der Waals metalenses[J]. Nano Letters, 2018, 18(11): 6961-6966. doi: 10.1021/acs.nanolett.8b02875
    MORENO I, CAMPOS J, GORECKI C, et al. Effects of amplitude and phase mismatching errors in the generation of a kinoform for pattern recognition[J]. Japanese Journal of Applied Physics, 1995, 34(12R): 6423.
    LI X P, REN H R, CHEN X, et al. A thermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6(1): 6984. doi: 10.1038/ncomms7984
    LI P N, DOLADO I, ALFARO-MOZAZ F J, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 2018, 359(6378): 892-896. doi: 10.1126/science.aaq1704
    BAO Q L, ZHANG H, WANG B, et al. Broadband graphene polarizer[J]. Nature Photonics, 2011, 5(7): 411-415. doi: 10.1038/nphoton.2011.102
    KIM S, JANG M S, BRAR V W, et al. Electronically tunable perfect absorption in graphene[J]. Nano Letters, 2018, 18(2): 971-979. doi: 10.1021/acs.nanolett.7b04393
    WANG Y W, DENG Z L, HU D J, et al. Atomically thin noble metal dichalcogenides for phase-regulated meta-optics[J]. Nano Letters, 2020, 20(11): 7811-7818. doi: 10.1021/acs.nanolett.0c01805
    QIN F, LIU B Q, ZHU L W, et al. π-phase modulated monolayer supercritical lens[J]. Nature Communications, 2021, 12(1): 32. doi: 10.1038/s41467-020-20278-x
    LIN H, XU Z Q, CAO G Y, et al. Diffraction-limited imaging with monolayer 2D material-based ultrathin flat lenses[J]. Light:Science &Applications, 2020, 9(1): 137.
    HU D J, LI H, ZHU Y P, et al. Ultra-sensitive nanometric flat laser prints for binocular stereoscopic image[J]. Nature Communications, 2021, 12(1): 1154. doi: 10.1038/s41467-021-21499-4
    VAN DE GROEP J, SONG J H, CELANO U, et al. Exciton resonance tuning of an atomically thin lens[J]. Nature Photonics, 2020, 14(7): 426-430. doi: 10.1038/s41566-020-0624-y
    QU CH, MA SH J, HAO J M, et al. Tailor the functionalities of metasurfaces based on a complete phase diagram[J]. Physical Review Letters, 2015, 115(23): 235503. doi: 10.1103/PhysRevLett.115.235503
    LOPEZ-SANCHEZ O, LEMBKE D, KAYCI M, et al. Ultrasensitive photodetectors based on monolayer MoS2[J]. Nature Nanotechnology, 2013, 8(7): 497-501. doi: 10.1038/nnano.2013.100
    ANDRZEJEWSKI D, HOPMANN E, JOHN M, et al. WS2 monolayer-based light-emitting devices in a vertical p–n architecture[J]. Nanoscale, 2019, 11(17): 8372-8379. doi: 10.1039/C9NR01573F
    DOBUSCH L, SCHULER S, PEREBEINOS V, et al. Thermal light emission from monolayer MoS2[J]. Advanced Materials, 2017, 29(31): 1701304. doi: 10.1002/adma.201701304
    YANG J, WANG ZH, WANG F, et al. Atomically thin optical lenses and gratings[J]. Light:Science &Applications, 2016, 5(3): e16046.
    KATS M A, BLANCHARD R, GENEVET P, et al. Nanometre optical coatings based on strong interference effects in highly absorbing media[J]. Nature Materials, 2013, 12(1): 20-24. doi: 10.1038/nmat3443
    WANG Z, YUAN G H, YANG M, et al. Exciton-enabled meta-optics in two-dimensional transition metal dichalcogenides[J]. Nano Letters, 2020, 20(11): 7964-7972. doi: 10.1021/acs.nanolett.0c02712
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(1411) PDF downloads(229) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint