Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LI Chen-hao, MAIER Stefan A., REN Hao-ran. Optical vortices in nanophotonics[J]. Chinese Optics, 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066
Citation: LI Chen-hao, MAIER Stefan A., REN Hao-ran. Optical vortices in nanophotonics[J]. Chinese Optics, 2021, 14(4): 792-811. doi: 10.37188/CO.2021-0066

Optical vortices in nanophotonics

doi: 10.37188/CO.2021-0066
Funds:  Supported by China Scholarship Council National Construction High-Level University Public Postgraduate Project (No. 201906120420)
More Information
  • Author Bio:

    Mr Chenhao Li received his B.E.in Electronics Science and Technology from Harbin Institute of Technology in 2017. In 2019, he obtained M.Eng in Physical Electronics from Harbin Institute of Technology. Currently he is a PhD candidate at Ludwig-Maximilians-Universität Münchenin Germany supported by an LMU-CSC scholarship. His current research interests include nanophotonics and nanofabrication andtheir applications. E-mail: chenhao.li@physik.uni-muenchen.de

    Dr Haoran Ren gained his PhD in February 2017 at Swinburne University of Technology in Australia. From 2016 to 2018, he was a postdoc at RMIT University in Australia. In October-December 2018, he won a Victoria Fellowship to visit the National Centre for Scientific Research (CNRS) in France. From 2019 to 2020, he was a former Humboldt Research Fellow at Ludwig Maximilian University of Munich in Germany. In December 2020, Dr Ren relocated his research back to Australia and hold a Macquarie University Research Fellowship. His research interests include nanophotonics, structured light, optical holography, plasmonics, integrated photonics, and optical fibers

  • Corresponding author: Haoran.Ren@mq.edu.au
  • Received Date: 25 Mar 2021
  • Rev Recd Date: 19 Apr 2021
  • Available Online: 24 May 2021
  • Publish Date: 01 Jul 2021
  • In the last two decades, optical vortices carried by twisted light wavefronts have attracted a great deal of interest, providing not only new physical insights into light-matter interactions, but also a transformative platform for boosting optical information capacity. Meanwhile, advances in nanoscience and nanotechnology lead to the emerging field of nanophotonics, offering an unprecedented level of light manipulation via nanostructured materials and devices. Many exciting ideas and concepts come up when optical vortices meet nanophotonic devices. Here, we provide a minireview on recent achievements made in nanophotonics for the generation and detection of optical vortices and some of their applications.


  • loading
  • [1]
    ACKLAND B, ANESKO A, BRINTHAUPT D, et al. A single-chip, 1.6-billion, 16-b MAC/s multiprocessor DSP[J]. IEEE Journal of Solid-State Circuits, 2000, 35(3): 412-424. doi: 10.1109/4.826824
    DUTTA S, JENSEN R, RIECKMANN A. Viper: a multiprocessor SOC for advanced set-top box and digital TV systems[J]. IEEE Design &Test of Computers, 2001, 18(5): 21-31.
    GOODACRE J, SLOSS A N. Parallelism and the ARM instruction set architecture[J]. Computer, 2005, 38(7): 42-50. doi: 10.1109/MC.2005.239
    KISTLER M, PERRONE M, PETRINI F. Cell multiprocessor communication network: built for speed[J]. IEEE Micro, 2006, 26(3): 10-23. doi: 10.1109/MM.2006.49
    POLITI A, CRYAN M J, RARITY J G, et al. Silica-on-silicon waveguide quantum circuits[J]. Science, 2008, 320(5876): 646-649. doi: 10.1126/science.1155441
    POLITI A, MATTHEWS J C F, O'BRIEN J L. Shor's quantum factoring algorithm on a photonic chip[J]. Science, 2009, 325(5945): 1221. doi: 10.1126/science.1173731
    SMITH B J, KUNDYS D, THOMAS-PETER N, et al. Phase-controlled integrated photonic quantum circuits[J]. Optics Express, 2009, 17(16): 13516-13525. doi: 10.1364/OE.17.013516
    SILVERSTONE J W, BONNEAU D, OHIRA K, et al. On-chip quantum interference between silicon photon-pair sources[J]. Nature Photonics, 2014, 8(2): 104-108. doi: 10.1038/nphoton.2013.339
    PERUZZO A, MCCLEAN J, SHADBOLT P, et al. A variational eigenvalue solver on a photonic quantum processor[J]. Nature Communications, 2014, 5: 4213. doi: 10.1038/ncomms5213
    CAROLAN J, HARROLD C, SPARROW C, et al. Universal linear optics[J]. Science, 2015, 349(6249): 711-716. doi: 10.1126/science.aab3642
    PAESANI S, DING Y H, SANTAGATI R, et al. Generation and sampling of quantum states of light in a silicon chip[J]. Nature Physics, 2019, 15(9): 925-929. doi: 10.1038/s41567-019-0567-8
    ZIJLSTRA P, CHON J W M, GU M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053
    LI X P, LAN T H, TIEN C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998. doi: 10.1038/ncomms2006
    LI X P, REN H R, CHEN X, et al. A thermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 2015, 6: 6984. doi: 10.1038/ncomms7984
    HUANG L L, MÜHLENBERND H, LI X W, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449. doi: 10.1002/adma.201502541
    SHEN B, WANG P, POLSON R, et al. An integrated-nanophotonics polarization beamsplitter with 2.4 × 2.4 μm2 footprint[J]. Nature Photonics, 2015, 9(6): 378-382. doi: 10.1038/nphoton.2015.80
    MONTELONGO Y, TENORIO-PEARL J O, WILLIAMS C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683. doi: 10.1073/pnas.1405262111
    YUN H, LEE S Y, HONG K, et al. Plasmonic cavity-apertures as dynamic pixels for the simultaneous control of colour and intensity[J]. Nature Communications, 2015, 6: 7133. doi: 10.1038/ncomms8133
    DENG R R, QIN F, CHEN R F, et al. Temporal full-colour tuning through non-steady-state upconversion[J]. Nature Nanotechnology, 2015, 10(3): 237-242. doi: 10.1038/nnano.2014.317
    PIGGOTT A Y, LU J, LAGOUDAKIS K G, et al. Inverse design and demonstration of a compact and broadband on-chip wavelength demultiplexer[J]. Nature Photonics, 2015, 9(6): 374-377. doi: 10.1038/nphoton.2015.69
    LAUX E, GENET C, SKAULI T, et al. Plasmonic photon sorters for spectral and polarimetric imaging[J]. Nature Photonics, 2008, 2(3): 161-164. doi: 10.1038/nphoton.2008.1
    LU Y Q, ZHAO J B, ZHANG R, et al. Tunable lifetime multiplexing using luminescent nanocrystals[J]. Nature Photonics, 2013, 8(1): 32-36.
    REN H R, LI X P, ZHANG Q M, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809. doi: 10.1126/science.aaf1112
    YUE Z J, REN H R, WEI SH B, et al. Angular-momentum nanometrology in an ultrathin plasmonic topological insulator film[J]. Nature Communications, 2018, 9(1): 4413. doi: 10.1038/s41467-018-06952-1
    POYNTING J H. The wave motion of a revolving shaft, and a suggestion as to the angular momentum in a beam of circularly polarised light[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences, 1909, 82(557): 560-567.
    BETH R A. Mechanical detection and measurement of the angular momentum of light[J]. Physical Review, 1936, 50(2): 115-125. doi: 10.1103/PhysRev.50.115
    O'NEIL A T, MACVICAR I, ALLEN L, et al. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam[J]. Physical Review Letters, 2002, 88(5): 053601. doi: 10.1103/PhysRevLett.88.053601
    ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185-8189. doi: 10.1103/PhysRevA.45.8185
    SIT A, BOUCHARD F, FICKLER R, et al. High-dimensional intracity quantum cryptography with structured photons[J]. Optica, 2017, 4(9): 1006-1010. doi: 10.1364/OPTICA.4.001006
    NAGALI E, SANSONI L, SCIARRINO F, et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence[J]. Nature Photonics, 2009, 3(12): 720-723. doi: 10.1038/nphoton.2009.214
    WANG X L, CAI X D, SU Z E, et al. Quantum teleportation of multiple degrees of freedom of a single photon[J]. Nature, 2015, 518(7540): 516-519. doi: 10.1038/nature14246
    WILLNER A E, LIU C. Perspective on using multiple orbital-angular-momentum beams for enhanced capacity in free-space optical communication links[J]. Nanophotonics, 2020, 10(1): 225-233. doi: 10.1515/nanoph-2020-0435
    GIBSON G, COURTIAL J, PADGETT M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448-5456. doi: 10.1364/OPEX.12.005448
    HECKENBERG N R, MCDUFF R, SMITH C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221-223. doi: 10.1364/OL.17.000221
    BEIJERSBERGEN M W, COERWINKEL R P C, KRISTENSEN M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5-6): 321-327. doi: 10.1016/0030-4018(94)90638-6
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    KARIMI E, SCHULZ S A, DE LEON I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light:Science &Applications, 2014, 3(5): e167.
    MAGUID E, YULEVICH I, VEKSLER D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206. doi: 10.1126/science.aaf3417
    DEVLIN R C, AMBROSIO A, RUBIN N A, et al. Arbitrary spin-to-orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896-901. doi: 10.1126/science.aao5392
    DEVLIN R C, AMBROSIO A, WINTZ D, et al. Spin-to-orbital angular momentum conversion in dielectric metasurfaces[J]. Optics Express, 2017, 25(1): 377-393. doi: 10.1364/OE.25.000377
    CAI X L, WANG J W, STRAIN M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363-366. doi: 10.1126/science.1226528
    XIE ZH W, LEI T, LI F, et al. Ultra-broadband on-chip twisted light emitter for optical communications[J]. Light:Science &Applications, 2018, 7: 18001.
    MIAO P, ZHANG ZH F, SUN J B, et al. Orbital angular momentum microlaser[J]. Science, 2016, 353(6298): 464-467. doi: 10.1126/science.aaf8533
    CARLON ZAMBON N, ST-JEAN P, MILIĆEVIĆ M, et al. Optically controlling the emission chirality of microlasers[J]. Nature Photonics, 2019, 13(4): 283-288. doi: 10.1038/s41566-019-0380-z
    HUANG C, ZHANG CH, XIAO SH M, et al. Ultrafast control of vortex microlasers[J]. Science, 2020, 367(6481): 1018-1021. doi: 10.1126/science.aba4597
    KIM H, PARK J, CHO S W, et al. Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens[J]. Nano Letters, 2010, 10(2): 529-536. doi: 10.1021/nl903380j
    DAI Y N, ZHOU ZH K, GHOSH A, et al.. Ultrafast microscopy of a plasmonic spin skyrmion[J]. arXiv: 1912.03826, 2019.
    SPEKTOR G, KILBANE D, MAHRO A K, et al. Revealing the subfemtosecond dynamics of orbital angular momentum in nanoplasmonic vortices[J]. Science, 2017, 355(6330): 1187-1191. doi: 10.1126/science.aaj1699
    GENEVET P, LIN J, KATS M A, et al. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes[J]. Nature Communications, 2012, 3: 1278. doi: 10.1038/ncomms2293
    JI ZH R, LIU W J, KRYLYUK S, et al. Photocurrent detection of the orbital angular momentum of light[J]. Science, 2020, 368(6492): 763-767. doi: 10.1126/science.aba9192
    POZAR D M, TARGONSKI S D. A shared-aperture dual-band dual-polarized microstrip array[J]. IEEE Transactions on Antennas and Propagation, 2001, 49(2): 150-157. doi: 10.1109/8.914255
    LAGER I E, TRAMPUZ C, SIMEONI M, et al. Interleaved array antennas for FMCW radar applications[J]. IEEE Transactions on Antennas and Propagation, 2009, 57(8): 2486-2490. doi: 10.1109/TAP.2009.2024573
    COMAN C I, LAGER I E, LIGTHART L P. The design of shared aperture antennas consisting of differently sized elements[J]. IEEE Transactions on Antennas and Propagation, 2006, 54(2): 376-383. doi: 10.1109/TAP.2005.863382
    SIMEONI M, LAGER I E, COMAN C I, et al. Implementation of polarization agility in planar phased-array antennas by means of interleaved subarrays[J]. Radio Science, 2009, 44(5): RS5013.
    POCHI Y, CLAIRE G. Optics of Liquid Crystal Displays[M]. Canada: Wiley, 2009.
    DE VRIES H. Rotatory power and other optical properties of certain liquid crystals[J]. Acta Crystallographica, 1951, 4(3): 219-226. doi: 10.1107/S0365110X51000751
    KOBASHI J, YOSHIDA H, OZAKI M. Planar optics with patterned chiral liquid crystals[J]. Nature Photonics, 2016, 10(6): 389-392. doi: 10.1038/nphoton.2016.66
    RAFAYELYAN M, TKACHENKO G, BRASSELET E. Reflective spin-orbit geometric phase from chiral anisotropic optical media[J]. Physical Review Letters, 2016, 116(25): 253902. doi: 10.1103/PhysRevLett.116.253902
    CHEN P, MA L L, HU W, et al. Chirality invertible superstructure mediated active planar optics[J]. Nature Communications, 2019, 10(1): 2518. doi: 10.1038/s41467-019-10538-w
    LI SH Q, XU X W, MARUTHIYODAN VEETIL R, et al. Phase-only transmissive spatial light modulator based on tunable dielectric metasurface[J]. Science, 2019, 364(6445): 1087-1090. doi: 10.1126/science.aaw6747
    BUCHNEV O, PODOLIAK N, KACZMAREK M, et al. Electrically controlled nanostructured metasurface loaded with liquid crystal: toward multifunctional photonic switch[J]. Advanced Optical Materials, 2015, 3(5): 674-679. doi: 10.1002/adom.201400494
    DECKER M, KREMERS C, MINOVICH A, et al. Electro-optical switching by liquid-crystal controlled metasurfaces[J]. Optics Express, 2013, 21(7): 8879-8885. doi: 10.1364/OE.21.008879
    KOMAR A, PANIAGUA-DOMÍNGUEZ R, MIROSHNICHENKO A, et al. Dynamic beam switching by liquid crystal tunable dielectric metasurfaces[J]. ACS Photonics, 2018, 5(5): 1742-1748. doi: 10.1021/acsphotonics.7b01343
    ZHANG Y F, FOWLER C, LIANG J H, et al. Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material[J]. Nature Nanotechnology, 2021.
    CHU CH H, TSENG M L, CHEN J, et al. Active dielectric metasurface based on phase-change medium[J]. Laser &Photonics Reviews, 2016, 10(6): 986-994.
    WANG Q, ROGERS E T F, GHOLIPOUR B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247
    BERTO P, PHILIPPET L, OSMOND J, et al. Tunable and free-form planar optics[J]. Nature Photonics, 2019, 13(9): 649-656. doi: 10.1038/s41566-019-0486-3
    WANG B, LIU W ZH, ZHAO M X, et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum[J]. Nature Photonics, 2020, 14(10): 623-628. doi: 10.1038/s41566-020-0658-1
    DOELEMAN H M, MONTICONE F, DEN HOLLANDER W, et al. Experimental observation of a polarization vortex at an optical bound state in the continuum[J]. Nature Photonics, 2018, 12(7): 397-401. doi: 10.1038/s41566-018-0177-5
    ZHANG Y W, CHEN A, LIU W ZH, et al. Observation of polarization vortices in momentum space[J]. Physical Review Letters, 2018, 120(18): 186103. doi: 10.1103/PhysRevLett.120.186103
    CHIASERA A, DUMEIGE Y, FÉRON P, et al. Spherical whispering-gallery-mode microresonators[J]. Laser &Photonics Reviews, 2010, 4(3): 457-482.
    ZHEN B, HSU C W, LU L, et al. Topological nature of optical bound states in the continuum[J]. Physical Review Letters, 2014, 113(25): 257401. doi: 10.1103/PhysRevLett.113.257401
    SPEKTOR G, KILBANE D, MAHRO A K, et al. Mixing the light spin with plasmon orbit by nonlinear light-matter interaction in gold[J]. Physical Review X, 2019, 9(2): 021031. doi: 10.1103/PhysRevX.9.021031
    SHI P, DU L P, YUAN X C. Strong spin–orbit interaction of photonic skyrmions at the general optical interface[J]. Nanophotonics, 2020, 9(15): 4619-4628. doi: 10.1515/nanoph-2020-0430
    DAI Y N, ZHOU ZH K, GHOSH A, et al. Plasmonic topological quasiparticle on the nanometre and femtosecond scales[J]. Nature, 2020, 588(7839): 616-619. doi: 10.1038/s41586-020-3030-1
    TSESSES S, OSTROVSKY E, COHEN K, et al. Optical skyrmion lattice in evanescent electromagnetic fields[J]. Science, 2018, 361(6406): 993-996. doi: 10.1126/science.aau0227
    YANG W R, YANG H H, CAO Y SH, et al. Photonic orbital angular momentum transfer and magnetic skyrmion rotation[J]. Optics Express, 2018, 26(7): 8778-8790. doi: 10.1364/OE.26.008778
    DU L P, YANG A P, ZAYATS A V, et al. Deep-subwavelength features of photonic skyrmions in a confined electromagnetic field with orbital angular momentum[J]. Nature Physics, 2019, 15(7): 650-654. doi: 10.1038/s41567-019-0487-7
    DAVIS T J, JANOSCHKA D, DREHER P, et al. Ultrafast vector imaging of plasmonic skyrmion dynamics with deep subwavelength resolution[J]. Science, 2020, 368(6489): eaba6415. doi: 10.1126/science.aba6415
    MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905
    NAGALI E, SCIARRINO F, DE MARTINI F, et al. Quantum information transfer from spin to orbital angular momentum of photons[J]. Physical Review Letters, 2009, 103(1-3): 013601.
    BLIOKH K Y, OSTROVSKAYA E A, ALONSO M A, et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems[J]. Optics Express, 2011, 19(27): 26132-26149. doi: 10.1364/OE.19.026132
    MIRHOSSEINI M, MALIK M, SHI ZH M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 2013, 4: 2781. doi: 10.1038/ncomms3781
    WEST P R, ISHII S, NAIK GV, et al. Searching for better plasmonic materials[J]. Laser &Photonics Reviews, 2010, 4(6): 795-808.
    NAIK G V, SHALAEV V M, BOLTASSEVA A. Alternative plasmonic materials: beyond gold and silver[J]. Advanced Materials, 2013, 25(24): 3264-3294. doi: 10.1002/adma.201205076
    REN H R, GU M. Angular momentum-reversible near-unity bisignate circular dichroism[J]. Laser &Photonics Reviews, 2018, 12(5): 1700255.
    OU J Y, SO J K, ADAMO G, et al. Ultraviolet and visible range plasmonics in the topological insulator Bi1.5Sb0.5Te1.8Se1.2[J]. Nature Communications, 2014, 5: 5139. doi: 10.1038/ncomms6139
    YUE Z J, XUE G L, LIU J, et al. Nanometric holograms based on a topological insulator material[J]. Nature Communications, 2017, 8: 15354. doi: 10.1038/ncomms15354
    DUBROVKIN A M, ADAMO G, YIN J, et al. Visible range plasmonic modes on topological insulator nanostructures[J]. Advanced Optical Materials, 2017, 5(3): 1600768. doi: 10.1002/adom.201600768
    MEI SH T, HUANG K, LIU H, et al. On-chip discrimination of orbital angular momentum of light with plasmonic nanoslits[J]. Nanoscale, 2016, 8(4): 2227-2233. doi: 10.1039/C5NR07374J
    ASHKIN A, DZIEDZIC J M, BJORKHOLM J E, et al. Observation of a single-beam gradient force optical trap for dielectric particles[J]. Optics Letters, 1986, 11(5): 288-290. doi: 10.1364/OL.11.000288
    HE H, HECKENBERG N R, RUBINSZTEIN-DUNLOP H. Optical particle trapping with higher-order doughnut beams produced using high efficiency computer generated holograms[J]. Journal of Modern Optics, 1995, 42(1): 217-223. doi: 10.1080/09500349514550171
    FRIESE M E J, NIEMINEN T A, HECKENBERG N R, et al. Optical alignment and spinning of laser-trapped microscopic particles[J]. Nature, 1998, 394(6691): 348-350. doi: 10.1038/28566
    GRIER D G. A revolution in optical manipulation[J]. Nature, 2003, 424(6950): 810-816. doi: 10.1038/nature01935
    CHEN M ZH, MAZILU M, ARITA Y, et al. Optical trapping with a perfect vortex beam[J]. Proceedings of SPIE, 2014, 9164: 91640K.
    ZHANG Y Q, SHI W, SHEN ZH, et al. A plasmonic spanner for metal particle manipulation[J]. Scientific Reports, 2015, 5: 15446. doi: 10.1038/srep15446
    FICKLER R, LAPKIEWICZ R, HUBER M, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information[J]. Nature Communications, 2014, 5: 4502. doi: 10.1038/ncomms5502
    MAIR A, VAZIRI A, WEIHS G, et al. Entanglement of the orbital angular momentum states of photons[J]. Nature, 2001, 412(6844): 313-316. doi: 10.1038/35085529
    KARIMI E, BOYD R W. PHYSICS. Classical entanglement?[J]. Science, 2015, 350(6265): 1172-1173. doi: 10.1126/science.aad7174
    TONINELLI E, NDAGANO B, VALLÉS A, et al. Concepts in quantum state tomography and classical implementation with intense light: a tutorial[J]. Advances in Optics and Photonics, 2019, 11(1): 67-134. doi: 10.1364/AOP.11.000067
    BOZINOVIC N, YUE Y, REN Y X, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers[J]. Science, 2013, 340(6140): 1545-1548. doi: 10.1126/science.1237861
    WANG J, YANG J Y, FAZAL I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488-496. doi: 10.1038/nphoton.2012.138
    YAN Y, XIE G D, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876
    LEI T, ZHANG M, LI Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light:Science &Applications, 2015, 4(3): e257.
    HELL S W, WICHMANN J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy[J]. Optics Letters, 1994, 19(11): 780-782. doi: 10.1364/OL.19.000780
    SCOTT T F, KOWALSKI B A, SULLIVAN A C, et al. Two-color single-photon photoinitiation and photoinhibition for subdiffraction photolithography[J]. Science, 2009, 324(5929): 913-917. doi: 10.1126/science.1167610
    LI L J, GATTASS R R, GERSHGOREN E, et al. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization[J]. Science, 2009, 324(5929): 910-913. doi: 10.1126/science.1168996
    GAN Z S, CAO Y Y, EVANS R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061
    FISCHER J, WEGENER M. Three-dimensional optical laser lithography beyond the diffraction limit[J]. Laser &Photonics Reviews, 2013, 7(1): 22-44.
    ISHIKAWA-ANKERHOLD H C, ANKERHOLD R, DRUMMEN G P C. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM[J]. Molecules, 2012, 17(4): 4047-4132. doi: 10.3390/molecules17044047
    JOHNSON S A. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology[J]. WIREs Nanomedicine and Nanobiotechnology, 2015, 7(3): 266-281. doi: 10.1002/wnan.1300
    FÜRHAPTER S, JESACHER A, BERNET S, et al. Spiral phase contrast imaging in microscopy[J]. Optics Express, 2005, 13(3): 689-694. doi: 10.1364/OPEX.13.000689
    JESACHER A, FÜRHAPTER S, BERNET S, et al. Shadow effects in spiral phase contrast microscopy[J]. Physical Review Letters, 2005, 94(23): 233902. doi: 10.1103/PhysRevLett.94.233902
    SITU G, PEDRINI G, OSTEN W. Spiral phase filtering and orientation-selective edge detection/enhancement[J]. Journal of the Optical Society of America A, 2009, 26(8): 1788-1797. doi: 10.1364/JOSAA.26.001788
    ZHANG Y Y, WANG J K, ZHANG W H, et al. LED-based visible light communication for color image and audio transmission utilizing orbital angular momentum superposition modes[J]. Optics Express, 2018, 26(13): 17300-17311. doi: 10.1364/OE.26.017300
    NEARY P L, WATNIK A T, JUDD K P, et al. Machine learning-based signal degradation models for attenuated underwater optical communication OAM beams[J]. Optics Communications, 2020, 474: 126058. doi: 10.1016/j.optcom.2020.126058
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241
    ZHAO W Y, LIU B Y, JIANG H, et al. Full-color hologram using spatial multiplexing of dielectric metasurface[J]. Optics Letters, 2016, 41(1): 147-150. doi: 10.1364/OL.41.000147
    FANG X Y, REN H R, GU M. Orbital angular momentum holography for high-security encryption[J]. Nature Photonics, 2020, 14(2): 102-108. doi: 10.1038/s41566-019-0560-x
    KHORASANINEJAD M, AMBROSIO A, KANHAIYA P, et al. Broadband and chiral binary dielectric meta-holograms[J]. Science Advances, 2016, 2(5): e1501258. doi: 10.1126/sciadv.1501258
    HUO P CH, ZHANG CH, ZHU W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791-2798. doi: 10.1021/acs.nanolett.0c00471
    REN H R, BRIERE G, FANG X Y, et al. Metasurface orbital angular momentum holography[J]. Nature Communications, 2019, 10(1): 2986. doi: 10.1038/s41467-019-11030-1
    REN H R, FANG X Y, JANG J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11): 948-955. doi: 10.1038/s41565-020-0768-4
    ASHKIN A. Acceleration and trapping of particles by radiation pressure[J]. Physical Review Letters, 1970, 24(4): 156-159. doi: 10.1103/PhysRevLett.24.156
    FRIESE M E J, ENGER J, RUBINSZTEIN-DUNLOP H, et al. Optical angular-momentum transfer to trapped absorbing particles[J]. Physical Review A, 1996, 54(2): 1593-1596. doi: 10.1103/PhysRevA.54.1593
    SIMPSON N B, DHOLAKIA K, ALLEN L, et al. Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner[J]. Optics Letters, 1997, 22(1): 52-54. doi: 10.1364/OL.22.000052
    WOERDEMANN M, ALPMANN C, DENZ C. Optical assembly of microparticles into highly ordered structures using Ince–Gaussian beams[J]. Applied Physics Letters, 2011, 98(11): 111101. doi: 10.1063/1.3561770
    CHAPIN S C, GERMAIN V, DUFRESNE E R. Automated trapping, assembly, and sorting with holographic optical tweezers[J]. Optics Express, 2006, 14(26): 13095-13100. doi: 10.1364/OE.14.013095
    PADGETT M, BOWMAN R. Tweezers with a twist[J]. Nature Photonics, 2011, 5(6): 343-348. doi: 10.1038/nphoton.2011.81
    TORNER L, TORRES J P, CARRASCO S. Digital spiral imaging[J]. Optics Express, 2005, 13(3): 873-881. doi: 10.1364/OPEX.13.000873
    KOZAWA Y, MATSUNAGA D, SATO S. Superresolution imaging via superoscillation focusing of a radially polarized beam[J]. Optica, 2018, 5(2): 86-92. doi: 10.1364/OPTICA.5.000086
    CHEN L X, LEI J J, ROMERO J. Quantum digital spiral imaging[J]. Light:Science &Applications, 2014, 3(3): e153.
    GOODMAN J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwood Village: Roberts & Company Publishers, 2005.
    CRABTREE K, DAVIS J A, MORENO I. Optical processing with vortex-producing lenses[J]. Applied Optics, 2004, 43(6): 1360-1367. doi: 10.1364/AO.43.001360
    JESACHER A, FÜRHAPTER S, BERNET S, et al. Spiral interferogram analysis[J]. Journal of the Optical Society of America A, 2006, 23(6): 1400-1409. doi: 10.1364/JOSAA.23.001400
    RITSCH-MARTE M. Orbital angular momentum light in microscopy[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Science, 2017, 375(2087): 20150437. doi: 10.1098/rsta.2015.0437
    BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
    KAMALI S M, ARBABI E, ARBABI A, et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles[J]. Physical Review X, 2017, 7(4): 041056. doi: 10.1103/PhysRevX.7.041056
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807
    HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808. doi: 10.1038/ncomms3808
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    WANG L, KRUK S, TANG H ZH, et al. Grayscale transparent metasurface holograms[J]. Optica, 2016, 3(12): 1504-1505. doi: 10.1364/OPTICA.3.001504
    YAO A M, PADGETT M J. Orbital angular momentum: origins, behavior and applications[J]. Advances in Optics and Photonics, 2011, 3(2): 161-204. doi: 10.1364/AOP.3.000161
    SHEN Y J, WANG X J, XIE ZH W, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light:Science &Applications, 2019, 8: 90.
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(2755) PDF downloads(559) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint