Volume 15 Issue 1
Jan.  2022
Turn off MathJax
Article Contents
YANG Jing-yu, REN Zhi-jun, HUANG Wen-jun, XU Fu-yang. Complex non-diffraction beams generated using binary computational holography[J]. Chinese Optics, 2022, 15(1): 14-21. doi: 10.37188/CO.2021-0061
Citation: YANG Jing-yu, REN Zhi-jun, HUANG Wen-jun, XU Fu-yang. Complex non-diffraction beams generated using binary computational holography[J]. Chinese Optics, 2022, 15(1): 14-21. doi: 10.37188/CO.2021-0061

Complex non-diffraction beams generated using binary computational holography

doi: 10.37188/CO.2021-0061
Funds:  Supported by National Natural Science Foundation of China (No. 11674288)
More Information
  • Corresponding author: renzhijun@zjnu.cn
  • Received Date: 19 Mar 2021
  • Rev Recd Date: 27 Apr 2021
  • Available Online: 21 Jun 2021
  • Publish Date: 01 Jan 2022
  • The diffraction of optical fields is a universal phenomenon that can cause beams to spread during propagation in free space. Ideal non-diffracting (spatially stable) structured beams can propagate in free space without changing their initial field distribution at any plane orthogonal to the direction of propagation. Moreover, the non-diffracting structured beams also have the ability for self-recovery after encountering obstacles. Hence generating non-diffracting beams or structured beams is a very important field of research for overcoming the diffraction behavior of beams during propagation in free space. Any non-diffracting structured beams with a certain intensity, phase distribution, and propagation properties have special applications in the field of optics. Lately, some non-diffracting beams with complex structures are introduced one after another, such as Mathieu beams, parabolic beams, Lommel beams, asymmetric Bessel beams, and so on. The complex amplitude modulation is necessary to produce the non-diffracting beams with abundant structures. At present, no commercial optical modulator can modulate the phase and amplitude of light waves simultaneously. Based on binary computer-generated holography that can encode the two-dimensional transmission function distribution, a binary real amplitude computer-generated hologram with complex amplitude modulation functionality is designed and constructed. Binary real amplitude computer-generated holograms, which are a kind of binary optical diffracting element that generate non-diffracting beams with complex optical morphology, are designed and constructed by encoding the complex optical filed information by using the Lohmann-type detour phase coding method. For the Lohmann-type detour phase coding method, the coding principle is mainly that the complex field distribution information is transformed into amplitude and phase information. The complex field distribution is sampled, and one can obtain a matrix of point sources. Here, we extract the amplitude and phase information as input information to generate two 2D real value matrices for detour phase coding. By using the homemade projection imaging lithography system, the silver salt halide plate was exposed, developed and fixed, and then a binary mask is precisely machined. The homemade projection imaging lithography system can machine holograms with an ultrahigh resolution of 79874 × 79874 dpi and a maximum output of 156 mm × 156 mm. Using the mask, the non-diffracting beams with abundant structures can be produced accurately.
    Taking the non-diffracting Mathieu beam as an example, two kinds of binary real amplitude computer-generated holograms for generating Mathieu beams are constructed by using the Roman type detour phase coding method. In the process of the machine, the photolithography file is firstly divided into 47 unit patterns of 600 pixel × 600 pixel, where each unit pattern is automatically inputted into a DMD (Digital Micromirror Device) in proper sequence, and then subsequently scanned line-by-line for projection exposure. When the lithography is complete, the silver halide plate is processed to obtain the mask. In this experiment, the calculated CGH is 28000 pixel × 28000 pixel, and the size of a pixel is 318 nm×318 nm. The size of the produced binary masks is 8.9 mm × 8.9 mm. The non-diffracting Mathieu beams with elliptic coefficient q=10 and topological charge number m=0, 1 are generated, which belong to the even type Mathieu beams of the first kind. Undoubtedly, the classes of non-diffracting Mathieu beams, including the even type Mathieu beams of the second kind, odd type Mathieu beams of the first kind, and odd-type Mathieu beams of the second kind can also be generated using the same encoding method and experimental setup. Since one can encode both the amplitude information and the phase information of optical field in sole spatial light modulation, the experimental system is simple in structure. The experimental results show that the coding method of binary computer-generated holography is an accurate, convenient and efficient way to generate high-quality non-diffracting beams with abundant structures.


  • loading
  • [1]
    DURNIN J, MICELI JR J J, EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501. doi: 10.1103/PhysRevLett.58.1499
    娄岩, 陈纯毅, 赵义武, 等. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学,2017,10(6):768-776. doi: 10.3788/co.20171006.0768

    LOU Y, CHEN CH Y, ZHAO Y W, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese) doi: 10.3788/co.20171006.0768
    卢腾飞, 张凯宁, 吴志军, 等. 椭圆涡旋光束在海洋湍流中的传输特性[J]. 中国光学,2020,13(2):323-332. doi: 10.3788/co.20201302.0323

    LU T F, ZHANG K N, WU ZH J, et al. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332. (in Chinese) doi: 10.3788/co.20201302.0323
    GUTIÉRREZ-VEGA J C, ITURBE-CASTILLO M D, CHÁVEZ-CERDA S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495. doi: 10.1364/OL.25.001493
    BANDRES M A, GUTIÉRREZ-VEGA J C, CHÁVEZ-CERDA S. Parabolic nondiffracting optical wave fields[J]. Optics Letters, 2004, 29(1): 44-46. doi: 10.1364/OL.29.000044
    SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901. doi: 10.1103/PhysRevLett.99.213901
    VASARA A, TURUNEN J, FRIBERG A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, 1989, 6(11): 1748-1754. doi: 10.1364/JOSAA.6.001748
    ARLT J, DHOLAKIA K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 2000, 177(1-6): 297-301. doi: 10.1016/S0030-4018(00)00572-1
    朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法[J]. 物理学报,2020,69(1):256-264.

    ZHU Y F, GENG T. Generation of high-quality circular Airy beams in laser resonator[J]. Acta Physica Sinica, 2020, 69(1): 256-264. (in Chinese)
    CĂLIN B S, PREDA L, JIPA F, et al. Laser fabrication of diffractive optical elements based on detour-phase computer-generated holograms for two-dimensional Airy beams[J]. Applied Optics, 2018, 57(6): 1367-1372. doi: 10.1364/AO.57.001367
    GUO Y H, HUANG Y J, LI X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019, 7(18): 1900503. doi: 10.1002/adom.201900503
    WU B R, XU B J, WANG X G, et al. Generation of a polarization insensitive Airy beam using an all-dielectric metasurface[J]. Optical Materials Express, 2021, 11(3): 842-847. doi: 10.1364/OME.418910
    LIU Y J, XU CH J, LIN Z J. et al. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams[J]. Optics Letters, 2020, 45(11): 2957-2960. doi: 10.1364/OL.394443
    REN ZH J, YANG CH F, JIN H ZH, et al. Generation of a family of Pearcey beams based on Fresnel diffraction catastrophes[J]. Journal of Optics, 2015, 17(10): 105608. doi: 10.1088/2040-8978/17/10/105608
    REN ZH J, FAN CH J, SHI Y L, et al. Symmetric form-invariant dual Pearcey beams[J]. Journal of the Optical Society of America A, 2016, 33(8): 1523-1530. doi: 10.1364/JOSAA.33.001523
    WU Y, HE SH L, WU J H, et al. Autofocusing Pearcey-like vortex beam along a parabolic trajectory[J]. Chaos,Solitons &Fractals, 2021, 145: 110781.
    ROSALES-GUZMÁN C, HU X B, RODRÍGUEZ-FAJARDO V, et al. Experimental generation of helical Mathieu–Gauss vector modes[J]. Journal of Optics, 2021, 23(3): 034004. doi: 10.1088/2040-8986/abd9e0
    DAI K J, LI W ZH, MORGAN K S, et al. Second-harmonic generation of asymmetric Bessel-Gaussian beams carrying orbital angular momentum[J]. Optics Express, 2020, 28(2): 2536-2546. doi: 10.1364/OE.381679
    LI R, JIN D D, PAN D, et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond Bessel beam for in situ particle and cell manipulation[J]. ACS Nano, 2020, 14(5): 5233-5242. doi: 10.1021/acsnano.0c00381
    LI Y, ZHANG Y X, ZHU Y. Lommel-Gaussian pulsed beams carrying orbital angular momentum propagation in asymmetric oceanic turbulence[J]. IEEE Photonics Journal, 2020, 12(1): 7900915.
    LU Z H, YAN B L, CHANG K, et al. Space division multiplexing technology based on transverse wavenumber of Lommel-Gaussian beam[J]. Optics Communications, 2021, 488: 126835. doi: 10.1016/j.optcom.2021.126835
    ANGUIANO-MORALES M, MARTÍNEZ A, ITURBE-CASTILLO M D, et al. Different field distributions obtained with an axicon and an amplitude mask[J]. Optics Communications, 2008, 281(3): 401-407. doi: 10.1016/j.optcom.2007.10.013
    REN ZH J, HU H H, PENG B J. Generation of Mathieu beams using the method of ‘combined axicon and amplitude modulation’[J]. Optics Communications, 2018, 426: 226-230. doi: 10.1016/j.optcom.2018.05.040
    ARRIZÓN V, MÉNDEZ G, SÁNCHEZ-DE-LA-LLAVE D. Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators[J]. Optics Express, 2005, 13(20): 7913-7927. doi: 10.1364/OPEX.13.007913
    GOORDEN S A, BERTOLOTTI J, MOSK A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Optics Express, 2014, 22(15): 17999-8009. doi: 10.1364/OE.22.017999
    ARRIZÓN V, RUIZ U, CARRADA R, et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields[J]. Journal of the Optical Society of America A, 2007, 24(11): 3500-3507. doi: 10.1364/JOSAA.24.003500
    GONG L, QIU X Z, REN Y X, et al. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device[J]. Optics Express, 2014, 22(22): 26763-26776. doi: 10.1364/OE.22.026763
    ZHAO Q, GONG L, LI Y M. Shaping diffraction-free Lommel beams with digital binary amplitude masks[J]. Applied Optics, 2015, 54(25): 7553-7558. doi: 10.1364/AO.54.007553
    刘思垣, 张静宇. 基于空间光调制器的超快激光加工原理及应用[J]. 激光与光电子学进展,2020,57(11):111431.

    LIU S Y, ZHANG J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser &Optoelectronics Progress, 2020, 57(11): 111431. (in Chinese)
    苏显渝. 信息光学[M]. 2版. 北京: 科学出版社, 2011.

    SU X Y. Information Optics[M]. 2nd ed. Beijing: Science Press, 2011. (in Chinese)
    徐乾, 孟凡昊, 谢铮, 等. 计算全息显示技术的研究[J]. 物理实验,2018,38(1):1-7.

    XU Q, MENG F H, XIE ZH, et al. Research on computer generated holograms[J]. Physics Experimentation, 2018, 38(1): 1-7. (in Chinese)
    TAMURA H, TORII Y. Enhancement of the Lohmann-type computer-generated hologram encoded by direct multilevel search algorithm[J]. Optical Review, 2012, 19(3): 131-141. doi: 10.1007/s10043-012-0023-9
    WANG B X, HONG X M, WANG K, et al. Nonlinear detour phase holography[J]. Nanoscale, 2021, 13(4): 2693-2702. doi: 10.1039/D0NR07069F
    SHI Y L, WANG H, LI Y, et al. Practical method for color computer-generated rainbow holograms of real-existing objects[J]. Applied Optics, 2009, 48(21): 4219-4226. doi: 10.1364/AO.48.004219
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article views(785) PDF downloads(167) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint