Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
LIU Yong-jian, ZHANG Fei, XIE Ting, PU Ming-bo, ZHAO Ze-yu, LI Xiong, MA Xiao-liang, SHEN Tong-sheng, LUO Xian-gang. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. doi: 10.37188/CO.2021-0035
Citation: LIU Yong-jian, ZHANG Fei, XIE Ting, PU Ming-bo, ZHAO Ze-yu, LI Xiong, MA Xiao-liang, SHEN Tong-sheng, LUO Xian-gang. Polarization-multiplexed metalens enabled by adjoint optimization[J]. Chinese Optics, 2021, 14(4): 754-763. doi: 10.37188/CO.2021-0035

Polarization-multiplexed metalens enabled by adjoint optimization

doi: 10.37188/CO.2021-0035
Funds:  Supported by China Postdoctoral Science Foundation (No. 2020M680153); National Natural Science Foundation of China (No. 61975210, No. U20A20217)
More Information
  • Corresponding author: lxg@ioe.ac.cn
  • Received Date: 01 Feb 2021
  • Rev Recd Date: 26 Feb 2021
  • Available Online: 11 May 2021
  • Publish Date: 01 Jul 2021
  • Polarization imaging technology has important application value in target detection, biomedicine, and other fields, but traditional polarization imaging systems suffer from complex structures, large volume, and heavy weight. The polarization imaging system based on metasurfaces can avoid these problems effectively, which is conducive to the development of miniaturized, lighter and easily-integrated optical systems. However, the traditional design method for metasurfaces ignores near-field electromagnetic coupling caused by the local aperiodicity, which will seriously affect the diffraction efficiency of metalenses, especially if they have a large numerical aperture. To solve this problem, a general method for designing polarization-multiplexed metalenses based on boundary optimization is proposed in this paper, and a polarization imaging metalens with a large numerical aperture (~0.94) is designed, which can independently control x- and y-polarized light. For the optimization design with artificially optimal initial structures, the traditional design method of parameter scanning and manual selection was used to obtain the initial structure of the metalens, and then it was further optimized by the boundary optimization, resulting in about 20% improvement of the diffraction efficiency compared with that before optimization. For the optimization design with a uniform array as the initial structure, the diffraction efficiency can reach about 92% after about 20 iterations. The optimized design method proposed in this paper can effectively improve the efficiency of polarization-multiplexed metasurfaces, showing promising applications in polarization imaging, optical communication, and other fields.

     

  • loading
  • [1]
    SALOMATINA-MOTTS E, NEEL V A, YAROSLAVSKAYA A N. Multimodal polarization system for imaging skin cancer[J]. Optics and Spectroscopy, 2009, 107(6): 884-890. doi: 10.1134/S0030400X0912008X
    [2]
    DUBREUIL M, DELROT P, LEONARD I, et al. Exploring underwater target detection by imaging polarimetry and correlation techniques[J]. Applied Optics, 2013, 52(5): 997-1005. doi: 10.1364/AO.52.000997
    [3]
    HUANG B J, LIU T G, HU H F, et al. Underwater image recovery considering polarization effects of objects[J]. Optics Express, 2016, 24(9): 9826-9838. doi: 10.1364/OE.24.009826
    [4]
    DEUZÉ J L, BRÉON F M, DEVAUX C, et al. Remote sensing of aerosols over land surfaces from POLDER-ADEOS-1 polarized measurements[J]. Journal of Geophysical Research, 2001, 106(D5): 4913-4926. doi: 10.1029/2000JD900364
    [5]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [6]
    LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics,Mechanics &Astronomy, 2015, 58(9): 594201.
    [7]
    LUO X G. Subwavelength artificial structures: opening a new era for engineering optics[J]. Advanced Materials, 2019, 31(4): 1804680. doi: 10.1002/adma.201804680
    [8]
    YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
    [9]
    ZHANG F, XIE X, PU M B, et al. Multistate switching of photonic angular momentum coupling in phase-change metadevices[J]. Advanced Materials, 2020, 32(39): 1908194. doi: 10.1002/adma.201908194
    [10]
    张飞, 郭迎辉, 蒲明博, 等. 基于非对称光子自旋—轨道相互作用的超构表面[J]. 光电工程,2020,47(10):200366. doi: 10.12086/oee.2020.200366

    ZHANG F, GUO Y H, PU M B, et al. Metasurfaces enabled by asymmetric photonic spin-orbit interactions[J]. Opto-Electronic Engineering, 2020, 47(10): 200366. (in Chinese) doi: 10.12086/oee.2020.200366
    [11]
    ZHANG F, PU M B, LI X, et al. All-dielectric metasurfaces for simultaneous giant circular asymmetric transmission and wavefront shaping based on asymmetric photonic spin–orbit interactions[J]. Advanced Functional Materials, 2017, 27(47): 1704295. doi: 10.1002/adfm.201704295
    [12]
    LUO X G, ISHIHARA T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221
    [13]
    GAO P, YAO N, WANG CH T, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000
    [14]
    DOU K H, XIE X, PU M B, et al. Off-axis multi-wavelength dispersion controlling metalens for multi-color imaging[J]. Opto-Electronic Advances, 2020, 3(4): 190005.
    [15]
    HUO P CH, ZHANG CH, ZHU W Q, et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging[J]. Nano Letters, 2020, 20(4): 2791-2798. doi: 10.1021/acs.nanolett.0c00471
    [16]
    SCHLICKRIEDE C, KRUK S S, WANG L, et al. Nonlinear imaging with all-dielectric metasurfaces[J]. Nano Letters, 2020, 20(6): 4370-4376. doi: 10.1021/acs.nanolett.0c01105
    [17]
    MA X L, PU M B, LI X, et al. All-metallic wide-angle metasurfaces for multifunctional polarization manipulation[J]. Opto-Electronic Advances, 2019, 2(3): 180023.
    [18]
    GHOSH S K, DAS S, BHATTACHARYYA S. Transmittive-type triple-band linear to circular polarization conversion in THz region using graphene-based metasurface[J]. Optics Communications, 2021, 480: 126480. doi: 10.1016/j.optcom.2020.126480
    [19]
    PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
    [20]
    LUO X G. Catenary Optics[M]. Singapore: Springer, 2019.
    [21]
    LUO X G, PU M B, GUO Y H, et al. Catenary functions meet electromagnetic waves: opportunities and promises[J]. Advanced Optical Materials, 2020, 8(23): 2001194. doi: 10.1002/adom.202001194
    [22]
    LUO X G. Engineering Optics 2.0: A Revolution in Optical Theories, Materials, Devices and Systems[M]. Singapore: Springer, 2019.
    [23]
    ZHANG F, PU M B, LI X, et al. Extreme-angle silicon infrared optics enabled by streamlined surfaces[J]. Advanced Materials, 2021, 33(11): 2008157. doi: 10.1002/adma.202008157
    [24]
    ZHANG F, PU M B, LUO J, et al. Symmetry breaking of photonic spin-orbit interactions in metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 319-325.
    [25]
    BALTHASAR MUELLER J P, RUBIN N A, DEVLIN R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901
    [26]
    FAN Q B, LIU M Z, ZHANG CH, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
    [27]
    ZHOU H Q, SAIN B, WANG Y T, et al. Polarization-encrypted orbital angular momentum multiplexed metasurface holography[J]. ACS Nano, 2020, 14(5): 5553-5559. doi: 10.1021/acsnano.9b09814
    [28]
    ZHANG CH, DIVITT S, FAN Q B, et al. Low-loss metasurface optics down to the deep ultraviolet region[J]. Light:Science &Applications, 2020, 9: 55.
    [29]
    YAN CH, LI X, PU M B, et al. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces[J]. ACS Photonics, 2019, 6(3): 628-633. doi: 10.1021/acsphotonics.8b01119
    [30]
    ZHANG S, HUO P CH, ZHU W Q, et al. Broadband detection of multiple spin and orbital angular momenta via dielectric metasurface[J]. Laser &Photonics Reviews, 2020, 14(9): 2000062.
    [31]
    YAN CH, LI X, PU M B, et al. Midinfrared real-time polarization imaging with all-dielectric metasurfaces[J]. Applied Physics Letters, 2019, 114(16): 161904. doi: 10.1063/1.5091475
    [32]
    FAN Q B, ZHU W Q, LIANG Y ZH, et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible[J]. Nano Letters, 2019, 19(2): 1158-1165. doi: 10.1021/acs.nanolett.8b04571
    [33]
    ARBABI A, ARBABI E, MANSOUREE M, et al. Increasing efficiency of high numerical aperture metasurfaces using the grating averaging technique[J]. Scientific Reports, 2020, 10(1): 7124. doi: 10.1038/s41598-020-64198-8
    [34]
    LIU CH X, MAIER S A, LI G X. Genetic-algorithm-aided meta-atom multiplication for improved absorption and coloration in nanophotonics[J]. ACS Photonics, 2020, 7(7): 1716-1722. doi: 10.1021/acsphotonics.0c00266
    [35]
    LI Y, HONG M H. Diffractive efficiency optimization in metasurface design via electromagnetic coupling compensation[J]. Materials, 2019, 12(7): 1005. doi: 10.3390/ma12071005
    [36]
    SONG CH T, PAN L ZH, JIAO Y H, et al. A high-performance transmitarray antenna with thin metasurface for 5g communication based on PSO (Particle Swarm Optimization)[J]. Sensors, 2020, 20(16): 4460. doi: 10.3390/s20164460
    [37]
    MILLER O D. Photonic design: from fundamental solar cell physics to computational inverse design[D]. Berkeley: University of California at Berkeley, 2012.
    [38]
    YANG J J, SELL D, FAN J A. Freeform metagratings based on complex light scattering dynamics for extreme, high efficiency beam steering[J]. Annalen der Physik, 2018, 530(1): 1700302. doi: 10.1002/andp.201700302
    [39]
    MANSOUREE M, KWON H, ARBABI E, et al. Multifunctional 2.5D metastructures enabled by adjoint optimization[J]. Optica, 2020, 7(1): 77-84. doi: 10.1364/OPTICA.374787
    [40]
    MANSOUREE M, MCCLUNG A, SAMUDRALA S, et al. Large-scale parametrized metasurface design using adjoint optimization[J]. ACS Photonics, 2021, 8(2): 455-463. doi: 10.1021/acsphotonics.0c01058
    [41]
    YANG J J, FAN J A. Topology-optimized metasurfaces: impact of initial geometric layout[J]. Optics Letters, 2017, 42(16): 3161-3164. doi: 10.1364/OL.42.003161
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article views(1758) PDF downloads(392) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return