| Citation: | ZHENG Jia-lu, DAI Zhi-gao, HU Guang-wei, OU Qing-dong, ZHANG Jin-rui, GAN Xue-tao, QIU Cheng-wei, BAO Qiao-liang. Twisted van der Waals materials for photonics[J]. Chinese Optics, 2021, 14(4): 812-822. doi: 10.37188/CO.2021-0023 | 
 
	                | [1] | DAI ZH G, HU G W, SI G Y, et al. Edge-oriented and steerable hyperbolic polaritons in anisotropic van der Waals nanocavities[J]. Nature Communications, 2020, 11(1): 6086. doi:  10.1038/s41467-020-19913-4 | 
| [2] | MA W L, SHABBIR B, OU Q D, et al. Anisotropic polaritons in van der Waals materials[J]. InfoMat, 2020, 2(5): 777-790. doi:  10.1002/inf2.12119 | 
| [3] | NOVOSELOV K S, GEIM A K, MOROZOV S V, et al. Electric field effect in atomically thin carbon films[J]. Science, 2004, 306(5696): 666-669. doi:  10.1126/science.1102896 | 
| [4] | BAO Q L, LOH K P. Graphene photonics, plasmonics, and broadband optoelectronic devices[J]. ACS Nano, 2012, 6(5): 3677-3694. doi:  10.1021/nn300989g | 
| [5] | XIA F N, WANG H, XIAO D, et al. Two-dimensional material nanophotonics[J]. Nature Photonics, 2014, 8(12): 899-907. doi:  10.1038/nphoton.2014.271 | 
| [6] | LOW T, CHAVES A, CALDWELL J D, et al. Polaritons in layered two-dimensional materials[J]. Nature Materials, 2017, 16(2): 182-194. doi:  10.1038/nmat4792 | 
| [7] | KHURGIN J B, SUN G. In search of the elusive lossless metal[J]. Applied Physics Letters, 2010, 96(18): 181102. doi:  10.1063/1.3425890 | 
| [8] | HU F, LUAN Y, SCOTT M E, et al. Imaging exciton–polariton transport in MoSe2 waveguides[J]. Nature Photonics, 2017, 11(6): 356-360. doi:  10.1038/nphoton.2017.65 | 
| [9] | CALDWELL J D, LINDSAY L, GIANNINI V, et al. Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons[J]. Nanophotonics, 2015, 4(1): 44-68. doi:  10.1515/nanoph-2014-0003 | 
| [10] | HU G W, SHEN J L, QIU CH W, et al. Phonon polaritons and hyperbolic response in van der waals materials[J]. Advanced Optical Materials, 2020, 8(5): 1901393. doi:  10.1002/adom.201901393 | 
| [11] | CARR S, MASSATT D, FANG SH A, et al. Twistronics: manipulating the electronic properties of two-dimensional layered structures through their twist angle[J]. Physical Review B, 2017, 95(7): 075420. doi:  10.1103/PhysRevB.95.075420 | 
| [12] | CAO Y, FATEMI V, DEMIR A, et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 80-84. doi:  10.1038/nature26154 | 
| [13] | CAO Y, FATEMI V, FANG SH A, et al. Unconventional superconductivity in magic-angle graphene superlattices[J]. Nature, 2018, 556(7699): 43-50. doi:  10.1038/nature26160 | 
| [14] | JIANG L L, SHI ZH W, ZENG B, et al. Soliton-dependent plasmon reflection at bilayer graphene domain walls[J]. Nature Materials, 2016, 15(8): 840-844. doi:  10.1038/nmat4653 | 
| [15] | SUNKU S S, NI G X, JIANG B Y, et al. Photonic crystals for nano-light in moiré graphene superlattices[J]. Science, 2018, 362(6419): 1153-1156. doi:  10.1126/science.aau5144 | 
| [16] | TRAN K, MOODY G, WU F CH, et al. Evidence for moire excitons in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 71-75. doi:  10.1038/s41586-019-0975-z | 
| [17] | SEYLER K L, RIVERA P, YU H Y, et al. Signatures of moire-trapped valley excitons in MoSe2/WSe2 heterobilayers[J]. Nature, 2019, 567(7746): 66-70. doi:  10.1038/s41586-019-0957-1 | 
| [18] | JIN CH H, REGAN E C, YAN A M, et al. Observation of moire excitons in WSe2/WS2 heterostructure superlattices[J]. Nature, 2019, 567(7746): 76-80. doi:  10.1038/s41586-019-0976-y | 
| [19] | ALEXEEV E M, RUIZ-TIJERINA D A, DANOVICH M, et al. Resonantly hybridized excitons in moire superlattices in van der Waals heterostructures[J]. Nature, 2019, 567(7746): 81-86. doi:  10.1038/s41586-019-0986-9 | 
| [20] | NI G X, WANG H, JIANG B Y, et al. Soliton superlattices in twisted hexagonal boron nitride[J]. Nature Communications, 2019, 10(1): 4360. doi:  10.1038/s41467-019-12327-x | 
| [21] | HU G W, OU Q D, SI G Y, et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers[J]. Nature, 2020, 582(7811): 209-213. doi:  10.1038/s41586-020-2359-9 | 
| [22] | MA W L, ALONSO-GONZÁLEZ P, LI SH J, et al. In-plane anisotropic and ultra-low-loss polaritons in a natural van der Waals crystal[J]. Nature, 2018, 562(7728): 557-562. doi:  10.1038/s41586-018-0618-9 | 
| [23] | ZHENG Z B, XU N SH, OSCURATO S L, et al. A mid-infrared biaxial hyperbolic van der Waals crystal[J]. Science Advances, 2019, 5(5): eaav8690. doi:  10.1126/sciadv.aav8690 | 
| [24] | WU Y J, OU Q D, YIN Y F, et al. Chemical switching of low-loss phonon polaritons in α-MoO3 by hydrogen intercalation[J]. Nature Communications, 2020, 11(1): 2646. doi:  10.1038/s41467-020-16459-3 | 
| [25] | ALCARAZ IRANZO D, NANOT S, DIAS E J C, et al. Probing the ultimate plasmon confinement limits with a van der waals heterostructure[J]. Science, 2018, 360(6386): 291-295. doi:  10.1126/science.aar8438 | 
| [26] | NI G X, WANG H, WU J S, et al. Plasmons in graphene moiré superlattices[J]. Nature Materials, 2015, 14(12): 1217-1222. doi:  10.1038/nmat4425 | 
| [27] | FEI Z, RODIN A S, ANDREEV G O, et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J]. Nature, 2012, 487(7405): 82-85. doi:  10.1038/nature11253 | 
| [28] | CHEN J N, BADIOLI M, ALONSO-GONZÁLEZ P, et al. Optical nano-imaging of gate-tunable graphene plasmons[J]. Nature, 2012, 487(7405): 77-81. doi:  10.1038/nature11254 | 
| [29] | WOESSNER A, LUNDEBERG M B, GAO Y D, et al. Highly confined low-loss plasmons in graphene-boron nitride heterostructures[J]. Nature Materials, 2015, 14(4): 421-425. doi:  10.1038/nmat4169 | 
| [30] | NI G X, WANG L, GOLDFLAM M D, et al. Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene[J]. Nature Photonics, 2016, 10(4): 244-247. doi:  10.1038/nphoton.2016.45 | 
| [31] | 吕新宇, 李志强. 石墨烯莫尔超晶格体系的拓扑性质及光学研究进展[J]. 物理学报,2019,68(22):220303. doi:  10.7498/aps.68.20191317 LÜ X Y, LI ZH Q. Topological properties of graphene moiré superlattice systems and recent optical studies[J]. Acta Physica Sinica, 2019, 68(22): 220303. (in Chinese) doi:  10.7498/aps.68.20191317 | 
| [32] | DAI ZH G, HU G W, OU Q D, et al. Artificial metaphotonics born naturally in two dimensions[J]. Chemical Reviews, 2020, 120(13): 6197-6246. doi:  10.1021/acs.chemrev.9b00592 | 
| [33] | SUN J B, ZHOU J, LI B, et al. Indefinite permittivity and negative refraction in natural material: graphite[J]. Applied Physics Letters, 2011, 98(10): 101901. doi:  10.1063/1.3562033 | 
| [34] | JACOB Z, ALEKSEYEV L V, NARIMANOV E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247-8256. doi:  10.1364/OE.14.008247 | 
| [35] | RHO J, YE Z L, XIONG Y, et al. Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies[J]. Nature Communications, 2010, 1(1): 143. doi:  10.1038/ncomms1148 | 
| [36] | LU D, KAN J J, FULLERTON E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48-53. doi:  10.1038/nnano.2013.276 | 
| [37] | SHALAGINOV M Y, ISHII S, LIU J, et al. Broadband enhancement of spontaneous emission from nitrogen-vacancy centers in nanodiamonds by hyperbolic metamaterials[J]. Applied Physics Letters, 2013, 102(17): 173114. doi:  10.1063/1.4804262 | 
| [38] | SREEKANTH K V, BIAGLOW T, STRANGI G. Directional spontaneous emission enhancement in hyperbolic metamaterials[J]. Journal of Applied Physics, 2013, 114(13): 134306. doi:  10.1063/1.4824287 | 
| [39] | TUMKUR T, ZHU G, BLACK P, et al. Control of spontaneous emission in a volume of functionalized hyperbolic metamaterial[J]. Applied Physics Letters, 2011, 99(15): 151115. doi:  10.1063/1.3631723 | 
| [40] | NOGINOV M A, LI H, BARNAKOV Y A, et al. Controlling spontaneous emission with metamaterials[J]. Optics Letters, 2010, 35(11): 1863-1865. doi:  10.1364/OL.35.001863 | 
| [41] | WURTZ G A, POLLARD R, HENDREN W, et al. Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality[J]. Nature Nanotechnology, 2011, 6(2): 107-111. doi:  10.1038/nnano.2010.278 | 
| [42] | KABASHIN A V, EVANS P, PASTKOVSKY S, et al. Plasmonic nanorod metamaterials for biosensing[J]. Nature Materials, 2009, 8(11): 867-871. doi:  10.1038/nmat2546 | 
| [43] | ALDEN J S, TSEN A W, HUANG P Y, et al. Strain solitons and topological defects in bilayer graphene[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(28): 11256-11260. doi:  10.1073/pnas.1309394110 | 
| [44] | JIANG B Y, NI G X, ADDISON Z, et al. Plasmon reflections by topological electronic boundaries in bilayer graphene[J]. Nano Letters, 2017, 17(11): 7080-7085. doi:  10.1021/acs.nanolett.7b03816 | 
| [45] | FEI Z, RODIN A S, GANNETT W, et al. Electronic and plasmonic phenomena at graphene grain boundaries[J]. Nature Nanotechnology, 2013, 8(11): 821-825. doi:  10.1038/nnano.2013.197 | 
| [46] | SONG Y, DERY H. Transport theory of monolayer transition-metal dichalcogenides through symmetry[J]. Physical Review Letters, 2013, 111(2): 026601. doi:  10.1103/PhysRevLett.111.026601 | 
| [47] | JU L, SHI ZH W, NAIR N, et al. Topological valley transport at bilayer graphene domain walls[J]. Nature, 2015, 520(7549): 650-655. doi:  10.1038/nature14364 | 
| [48] | HU G W, KRASNOK A, MAZOR Y, et al. Moiré hyperbolic metasurfaces[J]. Nano Letters, 2020, 20(5): 3217-3224. doi:  10.1021/acs.nanolett.9b05319 | 
| [49] | 张子洁, 梁瑜章, 徐挺. 双曲超材料及超表面研究进展[J]. 光电工程,2017,44(3):276-288. doi:  10.3969/j.issn.1003-501X.2017.03.002 ZHANG Z J, LIANG Y ZH, XU T. Research advances of hyperbolic metamaterials and metasurfaces[J]. Opto-Electronic Engineering, 2017, 44(3): 276-288. (in Chinese) doi:  10.3969/j.issn.1003-501X.2017.03.002 | 
| [50] | HIGH A A, DEVLIN R C, DIBOS A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192-196. doi:  10.1038/nature14477 | 
| [51] | GOMEZ-DIAZ J S, TYMCHENKO M, ALÙ A. Hyperbolic plasmons and topological transitions over uniaxial metasurfaces[J]. Physical Review Letters, 2015, 114(23): 233901. doi:  10.1103/PhysRevLett.114.233901 | 
| [52] | CORREAS-SERRANO D, GOMEZ-DIAZ J S, MELCON A A, et al. Black phosphorus plasmonics: anisotropic elliptical propagation and nonlocality-induced canalization[J]. Journal of Optics, 2016, 18(10): 104006. doi:  10.1088/2040-8978/18/10/104006 | 
| [53] | LI P N, DOLADO I, ALFARO-MOZAZ F J, et al. Infrared hyperbolic metasurface based on nanostructured van der Waals materials[J]. Science, 2018, 359(6378): 892-896. doi:  10.1126/science.aaq1704 | 
| [54] | NEMILENTSAU A, LOW T, HANSON G. Anisotropic 2D materials for tunable hyperbolic plasmonics[J]. Physical Review Letters, 2016, 116(6): 066804. doi:  10.1103/PhysRevLett.116.066804 | 
| [55] | GOMEZ-DIAZ J S, ALÙ A. Flatland optics with hyperbolic metasurfaces[J]. ACS Photonics, 2016, 3(12): 2211-2224. doi:  10.1021/acsphotonics.6b00645 | 
| [56] | BELASHCHENKO K D, VAN SCHILFGAARDE M, ANTROPOV V P. Coexistence of covalent and metallic bonding in the boron intercalation superconductor MgB2[J]. Physical Review B, 2001, 64(9): 092503. doi:  10.1103/PhysRevB.64.092503 | 
| [57] | GURITANU V, KUZMENKO A B, Van Der MAREL D, et al. Anisotropic optical conductivity and two colors of MgB2[J]. Physical Review B, 2006, 73(10): 104509. doi:  10.1103/PhysRevB.73.104509 | 
| [58] | NEE T W. Anisotropic optical properties of YBa2Cu3O7[J]. Journal of Applied Physics, 1992, 71(12): 6002-6007. doi:  10.1063/1.350454 | 
| [59] | KORZEB K, GAJC M, PAWLAK D A. Compendium of natural hyperbolic materials[J]. Optics Express, 2015, 23(20): 25406-25424. doi:  10.1364/OE.23.025406 | 
| [60] | SUN J B, LITCHINITSER N M, ZHOU J. Indefinite by nature: from ultraviolet to terahertz[J]. ACS Photonics, 2014, 1(4): 293-303. doi:  10.1021/ph4000983 | 
| [61] | CALDWELL J D, KRETININ A V, CHEN Y G, et al. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride[J]. Nature Communications, 2014, 5(1): 5221. doi:  10.1038/ncomms6221 | 
| [62] | ALEKSEYEV L V, PODOLSKIY V A, NARIMANOV E E. Homogeneous hyperbolic systems for terahertz and far-infrared frequencies[J]. Advances in OptoElectronics, 2012, 2012: 267564. | 
| [63] | GUPTA A, SAKTHIVEL T, SEAL S. Recent development in 2D materials beyond graphene[J]. Progress in Materials Science, 2015, 73: 44-126. doi:  10.1016/j.pmatsci.2015.02.002 | 
| [64] | LOW T, ROLDÁN R, WANG H, et al. Plasmons and screening in monolayer and multilayer black phosphorus[J]. Physical Review Letters, 2014, 113(10): 106802. doi:  10.1103/PhysRevLett.113.106802 | 
| [65] | RODIN A S, CARVALHO A, CASTRO NETO A H. Strain-induced gap modification in black phosphorus[J]. Physical Review Letters, 2014, 112(17): 176801. doi:  10.1103/PhysRevLett.112.176801 | 
| [66] | LOW T, RODIN A S, CARVALHO A, et al. Tunable optical properties of multilayer black phosphorus thin films[J]. Physical Review B, 2014, 90(7): 075434. doi:  10.1103/PhysRevB.90.075434 | 
| [67] | LIU Z ZH, AYDIN K. Localized surface plasmons in nanostructured monolayer black phosphorus[J]. Nano Letters, 2016, 16(6): 3457-3462. doi:  10.1021/acs.nanolett.5b05166 | 
| [68] | CAO Y, CHOWDHURY D, RODAN-LEGRAIN D, et al. Strange metal in magic-angle graphene with near planckian dissipation[J]. Physical Review Letters, 2020, 124(7): 076801. doi:  10.1103/PhysRevLett.124.076801 | 
| [69] | NEUNER III B, KOROBKIN D, FIETZ C, et al. Midinfrared index sensing of pL-scale analytes based on surface phonon polaritons in silicon carbide[J]. The Journal of Physical Chemistry C, 2010, 114(16): 7489-7491. doi:  10.1021/jp9114139 | 
| [70] | DAI S, FEI Z, MA Q, et al. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride[J]. Science, 2014, 343(6175): 1125-1129. doi:  10.1126/science.1246833 | 
| [71] | LI P N, LEWIN M, KRETININ A V, et al. Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing[J]. Nature Communications, 2015, 6(1): 7507. doi:  10.1038/ncomms8507 | 
| [72] | LI P, DOLADO I, ALFARO-MOZAZ F J, et al. Optical nanoimaging of hyperbolic surface polaritons at the edges of van der waals materials[J]. Nano Letters, 2017, 17(1): 228-235. doi:  10.1021/acs.nanolett.6b03920 | 
| [73] | LI P N, HU G W, DOLADO I, et al. Collective near-field coupling and nonlocal phenomena in infrared-phononic metasurfaces for nano-light canalization[J]. Nature Communications, 2020, 11(1): 3663. doi:  10.1038/s41467-020-17425-9 | 
| [74] | LI N, GUO X D, YANG X X, et al. Direct observation of highly confined phonon polaritons in suspended monolayer hexagonal boron nitride[J]. Nature Materials, 2021, 20(1): 43-48. doi:  10.1038/s41563-020-0763-z | 
| [75] | HU H, YANG X X, ZHAI F, et al. Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons[J]. Nature Communications, 2016, 7(1): 12334. doi:  10.1038/ncomms12334 | 
| [76] | HU D B, YANG X X, LI CH, et al. Probing optical anisotropy of nanometer-thin van der waals microcrystals by near-field imaging[J]. Nature Communications, 2017, 8(1): 1471. doi:  10.1038/s41467-017-01580-7 | 
| [77] | HU D B, CHEN K, CHEN X ZH, et al. Tunable modal birefringence in a low-loss van der waals waveguide[J]. Advanced Materials, 2019, 31(27): 1807788. doi:  10.1002/adma.201807788 | 
| [78] | HU H, YANG X X, GUO X D, et al. Gas identification with graphene plasmons[J]. Nature Communications, 2019, 10(1): 1131. doi:  10.1038/s41467-019-09008-0 | 
| [79] | GUO X D, LIU R N, HU D B, et al. Efficient all-optical plasmonic modulators with atomically thin van der waals heterostructures[J]. Advanced Materials, 2020, 32(11): 1907105. doi:  10.1002/adma.201907105 | 
| [80] | YANG X X, ZHAI F, HU H, et al. Far-field spectroscopy and near-field optical imaging of coupled Plasmon-phonon polaritons in 2D van der waals heterostructures[J]. Advanced Materials, 2016, 28(15): 2931-2938. doi:  10.1002/adma.201505765 | 
| [81] | BELOV P A, SIMOVSKI C R, IKONEN P. Canalization of subwavelength images by electromagnetic crystals[J]. Physical Review B, 2005, 71(19): 193105. doi:  10.1103/PhysRevB.71.193105 | 
| [82] | KRISHNAMOORTHY H N S, JACOB Z, NARIMANOV E, et al. Topological transitions in metamaterials[J]. Science, 2012, 336(6078): 205-209. doi:  10.1126/science.1219171 | 
| [83] | KEILMANN F, HILLENBRAND R. Near-field microscopy by elastic light scattering from a tip[J]. Philosophical Transactions of the Royal Society A:Mathematical,Physical and Engineering Sciences, 2004, 362(1817): 787-805. doi:  10.1098/rsta.2003.1347 | 
| [84] | SHVETS G, TRENDAFILOV S, PENDRY J B, et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays[J]. Physical Review Letters, 2007, 99(5): 053903. doi:  10.1103/PhysRevLett.99.053903 | 
| [85] | LI ZH Y, LIN L L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction[J]. Physical Review B, 2003, 68(24): 245110. doi:  10.1103/PhysRevB.68.245110 | 
