Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
FU Rao, LI Zi-le, ZHENG Guo-xing. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. doi: 10.37188/CO.2021-0017
Citation: FU Rao, LI Zi-le, ZHENG Guo-xing. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. doi: 10.37188/CO.2021-0017

Research development of amplitude-modulated metasurfaces and their functional devices

doi: 10.37188/CO.2021-0017
Funds:  Supported by National Natural Science Foundation of China (No. 91950110, No. 11774273, No. 11904267)
More Information
  • Corresponding author: gxzheng@whu.edu.cn
  • Received Date: 20 Jan 2021
  • Rev Recd Date: 22 Feb 2021
  • Available Online: 10 May 2021
  • Publish Date: 01 Jul 2021
  • Metasurfaces, a kind of artificial planar material with subwavelength feature sizes, have attracted much attention in recent years because they can precisely and flexibly manipulate the amplitude, phase, polarization, frequency and spectrum of incident electromagnetic waves at the subwavelength scale. Since amplitude is one of the fundamental properties of a lightwave, in this article, we focus on investigating the mechanism of amplitude-modulated metasurfaces. Amplitude modulation is carried out mainly by varying the sizes and orientation angles of nanostructures. In addition, the progress and applications of functional devices based on amplitude-modulated metasurfaces are summarized and discussed in detail. This article shows that amplitude-modulated metasurfaces have the advantages of flexible designs, simple fabrication, powerful functionality and are suitable for easily merging other optical property modulations. Amplitude-moderated metasurfaces have important research value and broad application prospects in the fields of high-resolution image display, high-density information storage, information encryption, information multiplexing, beam shaping, optical information processing, security, anticounterfeiting and many other related areas.

     

  • loading
  • [1]
    DAI Q, DENG L G, DENG J, et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Optics Express, 2019, 27(20): 27927-27935. doi: 10.1364/OE.27.027927
    [2]
    DAI Q, LI Z L, DENG L G, et al. Single-size nanostructured metasurface for dual-channel vortex beam generation[J]. Optics Letters, 2020, 45(13): 3773-3776. doi: 10.1364/OL.398286
    [3]
    DAI Q, ZHOU N, DENG L G, et al. Dual-channel binary gray-image display enabled with malus-assisted metasurfaces[J]. Physical Review Applied, 2020, 14(3): 034002.
    [4]
    DENG J, YANG Y, TAO J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237-9246. doi: 10.1021/acsnano.9b03738
    [5]
    FU R, DENG L G, GUAN ZH Q, et al. Zero-order-free meta-holograms in a broadband visible range[J]. Photonics Research, 2020, 8(5): ‏723-728. doi: 10.1364/PRJ.387397
    [6]
    ZHENG G X, FU R, DENG L G, et al. On-axis three-dimensional meta-holography enabled with continuous-amplitude modulation of light[J]. Optics Express, 2021, 29(4): 6147-6157. doi: 10.1364/OE.416084
    [7]
    SHAN X, LI Z L, DENG L G, et al. Continuous amplitude-modulated meta-fork gratings with zero-order extinction[J]. Optics Letters, 2020, 45(7): 1902-1905. doi: 10.1364/OL.387665
    [8]
    ZHANG Y L, CHENG Y, CHEN M, et al. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface[J]. Applied Physics Letters, 2020, 117(2): 021105. doi: 10.1063/5.0014987
    [9]
    KRUK S, HOPKINS B, KRAVCHENKO I I, et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 2016, 1(3): 030801. doi: 10.1063/1.4949007
    [10]
    CHEN CH, GAO SH L, XIAO X J, et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J]. Advanced Photonics Research, 2021, 2(3): 2000154. doi: 10.1002/adpr.202000154
    [11]
    LI Z L, KIM I, ZHANG L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382-9389. doi: 10.1021/acsnano.7b04868
    [12]
    WANG Q, XU Q, ZHANG X Q, et al. All-dielectric meta-holograms with holographic images transforming longitudinally[J]. ACS Photonics, 2018, 5(2): 599-606. doi: 10.1021/acsphotonics.7b01173
    [13]
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6(1): 8241. doi: 10.1038/ncomms9241
    [14]
    ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. doi: 10.1002/adma.201707499
    [15]
    ZHANG CH M, WEN D D, YUE F Y, et al. Optical metasurface generated vector beam for anticounterfeiting[J]. Physical Review Applied, 2018, 10(3): 034028. doi: 10.1103/PhysRevApplied.10.034028
    [16]
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    [17]
    ZHENG G X, WU W B, LI Z L, et al. Dual field-of-view step-zoom metalens[J]. Optics Letters, 2017, 42(7): 1261-1264. doi: 10.1364/OL.42.001261
    [18]
    SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light:Science &Applications, 2018, 7(1): 85.
    [19]
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
    [20]
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
    [21]
    LIN R J, SU V C, WANG SH M, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi: 10.1038/s41565-018-0347-0
    [22]
    CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 2019, 64(20): 1525-1531. doi: 10.1016/j.scib.2019.08.004
    [23]
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
    [24]
    FU R, LI Z L, ZHENG G X, et al. Reconfigurable step-zoom metalens without optical and mechanical compensations[J]. Optics Express, 2019, 27(9): 12221-12230. doi: 10.1364/OE.27.012221
    [25]
    CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3(1): 1198. doi: 10.1038/ncomms2207
    [26]
    CUI Y, ZHENG G X, CHEN M, et al. Reconfigurable continuous-zoom metalens in visible band[J]. Chinese Optics Letters, 2019, 17(11): 111603. doi: 10.3788/COL201917.111603
    [27]
    LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
    [28]
    WAN W W, GAO J, YANG X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671-10680. doi: 10.1021/acsnano.6b05453
    [29]
    ZHANG X H, PU M B, GUO Y H, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Advanced Functional Materials, 2019, 29(22): 1809145. doi: 10.1002/adfm.201809145
    [30]
    HU Y Q, LI L, WANG Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 2020, 20(2): 994-1002. doi: 10.1021/acs.nanolett.9b04107
    [31]
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    [32]
    YAN Y, XIE G D, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5(1): 4876. doi: 10.1038/ncomms5876
    [33]
    BAO Y J, NI J CH, QIU CH W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 2020, 32(6): 1905659. doi: 10.1002/adma.201905659
    [34]
    TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
    [35]
    YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396. doi: 10.1038/s41566-019-0394-6
    [36]
    RUBIN N A, D'AVERSA G, CHEVALIER P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
    [37]
    BUTT H, MONTELONGO Y, BUTLER T, et al. Carbon nanotube based high resolution holograms[J]. Advanced Materials, 2012, 24(44): OP331-OP336.
    [38]
    HUANG K, LIU H, GARCIA-VIDAL F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6(1): 7059. doi: 10.1038/ncomms8059
    [39]
    XU ZH T, HUANG L L, LI X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Advanced Optical Materials, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169
    [40]
    WALTHER B, HELGERT C, ROCKSTUHL C, et al. Diffractive optical elements based on plasmonic metamaterials[J]. Applied Physics Letters, 2011, 98(19): 191101. doi: 10.1063/1.3587622
    [41]
    WALTHER B, HELGERT C, ROCKSTUHL C, et al. Spatial and spectral light shaping with metamaterials[J]. Advanced Materials, 2012, 24(47): 6300-6304. doi: 10.1002/adma.201202540
    [42]
    MONTELONGO Y, TENORIO-PEARL J O, WILLIAMS C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683. doi: 10.1073/pnas.1405262111
    [43]
    MONTELONGO Y, TENORIO-PEARL J O, MILNE W I, et al. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas[J]. Nano Letters, 2014, 14(1): 294-298. doi: 10.1021/nl4039967
    [44]
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807
    [45]
    WANG Q, ZHANG X Q, XU Y H, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Scientific Reports, 2016, 6(1): 32867. doi: 10.1038/srep32867
    [46]
    LIU L X, ZHANG X Q, KENNEY M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials., 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484
    [47]
    HE J W, DONG T, CHI B H, et al. Meta-hologram for three-dimensional display in terahertz waveband[J]. Microelectronic Engineering, 2020, 220: 111151. doi: 10.1016/j.mee.2019.111151
    [48]
    JIA SH L, WAN X, SU P, et al. Broadband metasurface for independent control of reflected amplitude and phase[J]. AIP Advances, 2016, 6(4): 045024. doi: 10.1063/1.4948513
    [49]
    SONG X, HUANG L L, TANG CH CH, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(4): 1701181. doi: 10.1002/adom.201701181
    [50]
    OVERVIG A C, SHRESTHA S, MALEK S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light:Science &Applications, 2019, 8(1): 92.
    [51]
    REN H R, FANG X Y, JANG J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11): 948-955. doi: 10.1038/s41565-020-0768-4
    [52]
    HWANG C Y, YI Y, CHOI C G. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber[J]. Optics Letters, 2016, 41(5): 990-993. doi: 10.1364/OL.41.000990
    [53]
    LIN J, GENEVET P, KATS M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274. doi: 10.1021/nl402039y
    [54]
    MIN CH J, LIU J P, LEI T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram[J]. Laser &Photonics Reviews, 2016, 10(6): 978-985.
    [55]
    XIE ZH W, LEI T, SI G Y, et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth[J]. ACS Photonics, 2017, 4(9): 2158-2164. doi: 10.1021/acsphotonics.7b00710
    [56]
    LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245. doi: 10.1039/C7NR07154J
    [57]
    XU Q, ZHANG X Q, XU Y H, et al. Polarization-controlled surface plasmon holography[J]. Laser &Photonics Reviews, 2017, 11(1): 1600212.
    [58]
    DENG Z L, JIN M K, YE X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610
    [59]
    BAO Y J, YU Y, XU H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light:Science &Applications, 2019, 8(1): 95.
    [60]
    DENG Z L, DENG J H, ZHUANG X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885-2892. doi: 10.1021/acs.nanolett.8b00047
    [61]
    FAN Q B, LIU M Z, ZHANG CH, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
    [62]
    YUE F Y, ZHANG CH M, ZANG X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light:Science &Applications, 2018, 7(1): 17129.
    [63]
    LI J X, LI Z L, DENG L G, et al. Dichroic polarizing metasurfaces for color control and pseudo-color encoding[J]. IEEE Photonics Technology Letters, 2021, 33(2): 77-80.
    [64]
    ZHANG CH M, DONG F L, INTARAVANNE Y, et al. Multichannel metasurfaces for anticounterfeiting[J]. Physical Review Applied, 2019, 12(3): 034028. doi: 10.1103/PhysRevApplied.12.034028
    [65]
    TANG Y T, INTARAVANNE Y, DENG J H, et al. Nonlinear vectorial metasurface for optical encryption[J]. Physical Review Applied, 2019, 12(2): 024028. doi: 10.1103/PhysRevApplied.12.024028
    [66]
    HUO P CH, SONG M W, ZHU W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171-1172. doi: 10.1364/OPTICA.403092
    [67]
    WANG Q, ZHANG X Q, PLUM E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Advanced Optical Materials, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277
    [68]
    ZHANG X H, LI X, JIN J J, et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304-9310. doi: 10.1039/C7NR08428E
    [69]
    WANG L, LI T, GUO R Y, et al. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode[J]. Scientific Reports, 2013, 3(1): 2603. doi: 10.1038/srep02603
    [70]
    GUO J Y, WANG T, QUAN B G, et al. Polarization multiplexing for double images display[J]. Opto-Electronic Advances, 2019, 2(7): 180029.
    [71]
    CHEN Y, GAO J, YANG X D. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures[J]. Advanced Optical Materials, 2019, 7(6): 1801467. doi: 10.1002/adom.201801467
    [72]
    CHEN Y, YANG X D, GAO J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage[J]. Light:Science &Applications, 2019, 8(1): 45.
    [73]
    DENG J, DENG L G, GUAN Z Q, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Letters, 2020, 20(3): 1830-1838. doi: 10.1021/acs.nanolett.9b05053
    [74]
    SHAN X, DENG L G, DAI Q, et al. Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls[J]. Optics Express, 2020, 28(18): 26359-26369. doi: 10.1364/OE.402064
    [75]
    DENG L G, DENG J, GUAN ZH Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light:Science &Applications, 2020, 9(1): 101.
    [76]
    LI Z L, CHEN CH, GUAN ZH Q, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser &Photonics Reviews, 2020, 14(6): 2000032.
    [77]
    DAI Q, GUAN ZH Q, CHANG SH, et al. A single-celled Tri-functional metasurface enabled with triple manipulations of light[J]. Advanced Functional Materials, 2020, 30(50): 2003990. doi: 10.1002/adfm.202003990
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views(1806) PDF downloads(361) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return