Volume 14 Issue 4
Jul.  2021
Turn off MathJax
Article Contents
FU Rao, LI Zi-le, ZHENG Guo-xing. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. doi: 10.37188/CO.2021-0017
Citation: FU Rao, LI Zi-le, ZHENG Guo-xing. Research development of amplitude-modulated metasurfaces and their functional devices[J]. Chinese Optics, 2021, 14(4): 886-899. doi: 10.37188/CO.2021-0017

Research development of amplitude-modulated metasurfaces and their functional devices

doi: 10.37188/CO.2021-0017
Funds:  Supported by National Natural Science Foundation of China (No. 91950110, No. 11774273, No. 11904267)
More Information
  • Corresponding author: gxzheng@whu.edu.cn
  • Received Date: 20 Jan 2021
  • Rev Recd Date: 22 Feb 2021
  • Available Online: 10 May 2021
  • Publish Date: 01 Jul 2021
  • Metasurfaces, a kind of artificial planar material with subwavelength feature sizes, have attracted much attention in recent years because they can precisely and flexibly manipulate the amplitude, phase, polarization, frequency and spectrum of incident electromagnetic waves at the subwavelength scale. Since amplitude is one of the fundamental properties of a lightwave, in this article, we focus on investigating the mechanism of amplitude-modulated metasurfaces. Amplitude modulation is carried out mainly by varying the sizes and orientation angles of nanostructures. In addition, the progress and applications of functional devices based on amplitude-modulated metasurfaces are summarized and discussed in detail. This article shows that amplitude-modulated metasurfaces have the advantages of flexible designs, simple fabrication, powerful functionality and are suitable for easily merging other optical property modulations. Amplitude-moderated metasurfaces have important research value and broad application prospects in the fields of high-resolution image display, high-density information storage, information encryption, information multiplexing, beam shaping, optical information processing, security, anticounterfeiting and many other related areas.


  • loading
  • [1]
    DAI Q, DENG L G, DENG J, et al. Ultracompact, high-resolution and continuous grayscale image display based on resonant dielectric metasurfaces[J]. Optics Express, 2019, 27(20): 27927-27935. doi: 10.1364/OE.27.027927
    DAI Q, LI Z L, DENG L G, et al. Single-size nanostructured metasurface for dual-channel vortex beam generation[J]. Optics Letters, 2020, 45(13): 3773-3776. doi: 10.1364/OL.398286
    DAI Q, ZHOU N, DENG L G, et al. Dual-channel binary gray-image display enabled with malus-assisted metasurfaces[J]. Physical Review Applied, 2020, 14(3): 034002.
    DENG J, YANG Y, TAO J, et al. Spatial frequency multiplexed meta-holography and meta-nanoprinting[J]. ACS Nano, 2019, 13(8): 9237-9246. doi: 10.1021/acsnano.9b03738
    FU R, DENG L G, GUAN ZH Q, et al. Zero-order-free meta-holograms in a broadband visible range[J]. Photonics Research, 2020, 8(5): ‏723-728. doi: 10.1364/PRJ.387397
    ZHENG G X, FU R, DENG L G, et al. On-axis three-dimensional meta-holography enabled with continuous-amplitude modulation of light[J]. Optics Express, 2021, 29(4): 6147-6157. doi: 10.1364/OE.416084
    SHAN X, LI Z L, DENG L G, et al. Continuous amplitude-modulated meta-fork gratings with zero-order extinction[J]. Optics Letters, 2020, 45(7): 1902-1905. doi: 10.1364/OL.387665
    ZHANG Y L, CHENG Y, CHEN M, et al. Ultracompact metaimage display and encryption with a silver nanopolarizer based metasurface[J]. Applied Physics Letters, 2020, 117(2): 021105. doi: 10.1063/5.0014987
    KRUK S, HOPKINS B, KRAVCHENKO I I, et al. Invited article: broadband highly efficient dielectric metadevices for polarization control[J]. APL Photonics, 2016, 1(3): 030801. doi: 10.1063/1.4949007
    CHEN CH, GAO SH L, XIAO X J, et al. Highly efficient metasurface quarter-wave plate with wave front engineering[J]. Advanced Photonics Research, 2021, 2(3): 2000154. doi: 10.1002/adpr.202000154
    LI Z L, KIM I, ZHANG L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382-9389. doi: 10.1021/acsnano.7b04868
    WANG Q, XU Q, ZHANG X Q, et al. All-dielectric meta-holograms with holographic images transforming longitudinally[J]. ACS Photonics, 2018, 5(2): 599-606. doi: 10.1021/acsphotonics.7b01173
    WEN D D, YUE F Y, LI G X, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6(1): 8241. doi: 10.1038/ncomms9241
    ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. doi: 10.1002/adma.201707499
    ZHANG CH M, WEN D D, YUE F Y, et al. Optical metasurface generated vector beam for anticounterfeiting[J]. Physical Review Applied, 2018, 10(3): 034028. doi: 10.1103/PhysRevApplied.10.034028
    ZHENG G X, MÜHLENBERND H, KENNEY M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2
    ZHENG G X, WU W B, LI Z L, et al. Dual field-of-view step-zoom metalens[J]. Optics Letters, 2017, 42(7): 1261-1264. doi: 10.1364/OL.42.001261
    SHRESTHA S, OVERVIG A C, LU M, et al. Broadband achromatic dielectric metalenses[J]. Light:Science &Applications, 2018, 7(1): 85.
    WANG SH M, WU P C, SU V C, et al. Broadband achromatic optical metasurface devices[J]. Nature Communications, 2017, 8(1): 187. doi: 10.1038/s41467-017-00166-7
    WANG SH M, WU P C, SU V C, et al. A broadband achromatic metalens in the visible[J]. Nature Nanotechnology, 2018, 13(3): 227-232. doi: 10.1038/s41565-017-0052-4
    LIN R J, SU V C, WANG SH M, et al. Achromatic metalens array for full-colour light-field imaging[J]. Nature Nanotechnology, 2019, 14(3): 227-231. doi: 10.1038/s41565-018-0347-0
    CHENG Q Q, MA M L, YU D, et al. Broadband achromatic metalens in terahertz regime[J]. Science Bulletin, 2019, 64(20): 1525-1531. doi: 10.1016/j.scib.2019.08.004
    CHEN W T, ZHU A Y, SANJEEV V, et al. A broadband achromatic metalens for focusing and imaging in the visible[J]. Nature Nanotechnology, 2018, 13(3): 220-226. doi: 10.1038/s41565-017-0034-6
    FU R, LI Z L, ZHENG G X, et al. Reconfigurable step-zoom metalens without optical and mechanical compensations[J]. Optics Express, 2019, 27(9): 12221-12230. doi: 10.1364/OE.27.012221
    CHEN X ZH, HUANG L L, MÜHLENBERND H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3(1): 1198. doi: 10.1038/ncomms2207
    CUI Y, ZHENG G X, CHEN M, et al. Reconfigurable continuous-zoom metalens in visible band[J]. Chinese Optics Letters, 2019, 17(11): 111603. doi: 10.3788/COL201917.111603
    LI X, CHEN L W, LI Y, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102
    WAN W W, GAO J, YANG X D. Full-color plasmonic metasurface holograms[J]. ACS Nano, 2016, 10(12): 10671-10680. doi: 10.1021/acsnano.6b05453
    ZHANG X H, PU M B, GUO Y H, et al. Colorful metahologram with independently controlled images in transmission and reflection spaces[J]. Advanced Functional Materials, 2019, 29(22): 1809145. doi: 10.1002/adfm.201809145
    HU Y Q, LI L, WANG Y J, et al. Trichromatic and tripolarization-channel holography with noninterleaved dielectric metasurface[J]. Nano Letters, 2020, 20(2): 994-1002. doi: 10.1021/acs.nanolett.9b04107
    YU N F, GENEVET P, KATS M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713
    YAN Y, XIE G D, LAVERY M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5(1): 4876. doi: 10.1038/ncomms5876
    BAO Y J, NI J CH, QIU CH W. A minimalist single-layer metasurface for arbitrary and full control of vector vortex beams[J]. Advanced Materials, 2020, 32(6): 1905659. doi: 10.1002/adma.201905659
    TITTL A, LEITIS A, LIU M K, et al. Imaging-based molecular barcoding with pixelated dielectric metasurfaces[J]. Science, 2018, 360(6393): 1105-1109. doi: 10.1126/science.aas9768
    YESILKOY F, ARVELO E R, JAHANI Y, et al. Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces[J]. Nature Photonics, 2019, 13(6): 390-396. doi: 10.1038/s41566-019-0394-6
    RUBIN N A, D'AVERSA G, CHEVALIER P, et al. Matrix Fourier optics enables a compact full-Stokes polarization camera[J]. Science, 2019, 365(6448): eaax1839. doi: 10.1126/science.aax1839
    BUTT H, MONTELONGO Y, BUTLER T, et al. Carbon nanotube based high resolution holograms[J]. Advanced Materials, 2012, 24(44): OP331-OP336.
    HUANG K, LIU H, GARCIA-VIDAL F J, et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light[J]. Nature Communications, 2015, 6(1): 7059. doi: 10.1038/ncomms8059
    XU ZH T, HUANG L L, LI X W, et al. Quantitatively correlated amplitude holography based on photon sieves[J]. Advanced Optical Materials, 2020, 8(2): 1901169. doi: 10.1002/adom.201901169
    WALTHER B, HELGERT C, ROCKSTUHL C, et al. Diffractive optical elements based on plasmonic metamaterials[J]. Applied Physics Letters, 2011, 98(19): 191101. doi: 10.1063/1.3587622
    WALTHER B, HELGERT C, ROCKSTUHL C, et al. Spatial and spectral light shaping with metamaterials[J]. Advanced Materials, 2012, 24(47): 6300-6304. doi: 10.1002/adma.201202540
    MONTELONGO Y, TENORIO-PEARL J O, WILLIAMS C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683. doi: 10.1073/pnas.1405262111
    MONTELONGO Y, TENORIO-PEARL J O, MILNE W I, et al. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas[J]. Nano Letters, 2014, 14(1): 294-298. doi: 10.1021/nl4039967
    NI X J, KILDISHEV A V, SHALAEV V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4(1): 2807. doi: 10.1038/ncomms3807
    WANG Q, ZHANG X Q, XU Y H, et al. Broadband metasurface holograms: toward complete phase and amplitude engineering[J]. Scientific Reports, 2016, 6(1): 32867. doi: 10.1038/srep32867
    LIU L X, ZHANG X Q, KENNEY M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials., 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484
    HE J W, DONG T, CHI B H, et al. Meta-hologram for three-dimensional display in terahertz waveband[J]. Microelectronic Engineering, 2020, 220: 111151. doi: 10.1016/j.mee.2019.111151
    JIA SH L, WAN X, SU P, et al. Broadband metasurface for independent control of reflected amplitude and phase[J]. AIP Advances, 2016, 6(4): 045024. doi: 10.1063/1.4948513
    SONG X, HUANG L L, TANG CH CH, et al. Selective diffraction with complex amplitude modulation by dielectric metasurfaces[J]. Advanced Optical Materials, 2018, 6(4): 1701181. doi: 10.1002/adom.201701181
    OVERVIG A C, SHRESTHA S, MALEK S C, et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase[J]. Light:Science &Applications, 2019, 8(1): 92.
    REN H R, FANG X Y, JANG J, et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space[J]. Nature Nanotechnology, 2020, 15(11): 948-955. doi: 10.1038/s41565-020-0768-4
    HWANG C Y, YI Y, CHOI C G. Reflection-type spatial amplitude modulation of visible light based on a sub-wavelength plasmonic absorber[J]. Optics Letters, 2016, 41(5): 990-993. doi: 10.1364/OL.41.000990
    LIN J, GENEVET P, KATS M A, et al. Nanostructured holograms for broadband manipulation of vector beams[J]. Nano Letters, 2013, 13(9): 4269-4274. doi: 10.1021/nl402039y
    MIN CH J, LIU J P, LEI T, et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram[J]. Laser &Photonics Reviews, 2016, 10(6): 978-985.
    XIE ZH W, LEI T, SI G Y, et al. Meta-holograms with full parameter control of wavefront over a 1000 nm bandwidth[J]. ACS Photonics, 2017, 4(9): 2158-2164. doi: 10.1021/acsphotonics.7b00710
    LEE G Y, YOON G, LEE S Y, et al. Complete amplitude and phase control of light using broadband holographic metasurfaces[J]. Nanoscale, 2018, 10(9): 4237-4245. doi: 10.1039/C7NR07154J
    XU Q, ZHANG X Q, XU Y H, et al. Polarization-controlled surface plasmon holography[J]. Laser &Photonics Reviews, 2017, 11(1): 1600212.
    DENG Z L, JIN M K, YE X, et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces[J]. Advanced Functional Materials, 2020, 30(21): 1910610. doi: 10.1002/adfm.201910610
    BAO Y J, YU Y, XU H F, et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control[J]. Light:Science &Applications, 2019, 8(1): 95.
    DENG Z L, DENG J H, ZHUANG X, et al. Diatomic metasurface for vectorial holography[J]. Nano Letters, 2018, 18(5): 2885-2892. doi: 10.1021/acs.nanolett.8b00047
    FAN Q B, LIU M Z, ZHANG CH, et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces[J]. Physical Review Letters, 2020, 125(26): 267402. doi: 10.1103/PhysRevLett.125.267402
    YUE F Y, ZHANG CH M, ZANG X F, et al. High-resolution grayscale image hidden in a laser beam[J]. Light:Science &Applications, 2018, 7(1): 17129.
    LI J X, LI Z L, DENG L G, et al. Dichroic polarizing metasurfaces for color control and pseudo-color encoding[J]. IEEE Photonics Technology Letters, 2021, 33(2): 77-80.
    ZHANG CH M, DONG F L, INTARAVANNE Y, et al. Multichannel metasurfaces for anticounterfeiting[J]. Physical Review Applied, 2019, 12(3): 034028. doi: 10.1103/PhysRevApplied.12.034028
    TANG Y T, INTARAVANNE Y, DENG J H, et al. Nonlinear vectorial metasurface for optical encryption[J]. Physical Review Applied, 2019, 12(2): 024028. doi: 10.1103/PhysRevApplied.12.024028
    HUO P CH, SONG M W, ZHU W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171-1172. doi: 10.1364/OPTICA.403092
    WANG Q, ZHANG X Q, PLUM E, et al. Polarization and frequency multiplexed terahertz meta-holography[J]. Advanced Optical Materials, 2017, 5(14): 1700277. doi: 10.1002/adom.201700277
    ZHANG X H, LI X, JIN J J, et al. Polarization-independent broadband meta-holograms via polarization-dependent nanoholes[J]. Nanoscale, 2018, 10(19): 9304-9310. doi: 10.1039/C7NR08428E
    WANG L, LI T, GUO R Y, et al. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode[J]. Scientific Reports, 2013, 3(1): 2603. doi: 10.1038/srep02603
    GUO J Y, WANG T, QUAN B G, et al. Polarization multiplexing for double images display[J]. Opto-Electronic Advances, 2019, 2(7): 180029.
    CHEN Y, GAO J, YANG X D. Chiral grayscale imaging with plasmonic metasurfaces of stepped nanoapertures[J]. Advanced Optical Materials, 2019, 7(6): 1801467. doi: 10.1002/adom.201801467
    CHEN Y, YANG X D, GAO J. 3D Janus plasmonic helical nanoapertures for polarization-encrypted data storage[J]. Light:Science &Applications, 2019, 8(1): 45.
    DENG J, DENG L G, GUAN Z Q, et al. Multiplexed anticounterfeiting meta-image displays with single-sized nanostructures[J]. Nano Letters, 2020, 20(3): 1830-1838. doi: 10.1021/acs.nanolett.9b05053
    SHAN X, DENG L G, DAI Q, et al. Silicon-on-insulator based multifunctional metasurface with simultaneous polarization and geometric phase controls[J]. Optics Express, 2020, 28(18): 26359-26369. doi: 10.1364/OE.402064
    DENG L G, DENG J, GUAN ZH Q, et al. Malus-metasurface-assisted polarization multiplexing[J]. Light:Science &Applications, 2020, 9(1): 101.
    LI Z L, CHEN CH, GUAN ZH Q, et al. Three-channel metasurfaces for simultaneous meta-holography and meta-nanoprinting: a single-cell design approach[J]. Laser &Photonics Reviews, 2020, 14(6): 2000032.
    DAI Q, GUAN ZH Q, CHANG SH, et al. A single-celled Tri-functional metasurface enabled with triple manipulations of light[J]. Advanced Functional Materials, 2020, 30(50): 2003990. doi: 10.1002/adfm.202003990
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(1)

    Article views(1806) PDF downloads(361) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint