Volume 13 Issue 6
Dec.  2020
Turn off MathJax
Article Contents
LIU Ye, LIU Yu, XIAO Hui-dong, LI Hong-ling, QU Da-peng, ZHENG Quan. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. doi: 10.37188/CO.2020-0249
Citation: LIU Ye, LIU Yu, XIAO Hui-dong, LI Hong-ling, QU Da-peng, ZHENG Quan. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. doi: 10.37188/CO.2020-0249

638 nm narrow linewidth diode laser with a grating external cavity

doi: 10.37188/CO.2020-0249
Funds:  Jilin Province Science and Technology Development Plan (No. 20200401072GX)
More Information
  • Corresponding author: liuye@cnilaser.com
  • Received Date: 27 Dec 2019
  • Rev Recd Date: 22 Feb 2020
  • Available Online: 10 Nov 2020
  • Publish Date: 01 Dec 2020
  • In this paper, a narrow linewidth laser with an external grating cavity of 638 nm is described, wherein a reflection holographic grating was used as its external feedback element. The spectrum of the diode lasers with the grating external cavity arranged in a Littrow configuration were measured using a high-resolution monochromator and the characteristics of the threshold and tuning properties were investigated. In the experiment, reflection holographic gratings with 2400 l/mm and 1800 l/mm groove density were studied. At 120 mA injection current, the output power of the external cavity laser was 45.2 mW when the groove density was 2400 l/mm, and the threshold current of the LD was reduced from 60 mA to 51 mA and the descent rate was 11%. When the groove density was 1800 l/mm, the output power was 38.7 mW, the threshold current of the LD was reduced from 60 mA to 47 mA, and the descent rate was 24%. Furthermore, the linewidths were suppressed to within 3.5 pm, and the tuning ranges were 9.4 nm and 10.5 nm in wavelength. The experimental results showed that the performance of semiconductor lasers was improved greatly using the Littrow configuration with a reflective holographic grating.

     

  • loading
  • [1]
    LI F Q, YABLON J, VELTEN A, et al. High-depth-resolution range imaging with multiple-wavelength superheterodyne interferometry using 1550-nm lasers[J]. Applied Optics, 2017, 56(31): H51-H56. doi: 10.1364/AO.56.000H51
    [2]
    ELIA A, LUGARÀ P M, DI FRANCO C, et al. Photoacoustic techniques for trace gas sensing based on semiconductor laser sources[J]. Sensors, 2009, 9(12): 9616-9628. doi: 10.3390/s91209616
    [3]
    LANG X K, JIA P, CHEN Y Y, et al. Advances in narrow linewidth diode lasers[J]. Science China Information Sciences, 2019, 62(6): 61401. doi: 10.1007/s11432-019-9870-0
    [4]
    PABC EUF D, HASTIE J E. Tunable narrow linewidth AlGaInP semiconductor disk laser for Sr atom cooling applications[J]. Applied Optics, 2016, 55(19): 4980-4984. doi: 10.1364/AO.55.004980
    [5]
    YANG X X, YIN Y N, LI X J, et al. External cavity diode laser as a stable-frequency light source for application in laser cooling of molecules[J]. Chinese Optics Letters, 2016, 14(7): 071403. doi: 10.3788/COL201614.071403
    [6]
    高颖, 戴连奎, 朱华东, 等. 基于拉曼光谱的天然气主要组分定量分析[J]. 分析化学,2019,47(1):67-76.

    GAO Y, DAI L K, ZHU H D, et al. Quantitative analysis of main components of natural gas based on Raman spectroscopy[J]. Chinese Journal of Analytical Chemistry, 2019, 47(1): 67-76. (in Chinese)
    [7]
    刘洋, 张天舒, 赵雪松, 等. 高精度测温拉曼激光雷达光谱仪的光学设计[J]. 光学 精密工程,2018,26(8):1904-1909. doi: 10.3788/OPE.20182608.1904

    LIU Y, ZHANG T SH, ZHAO X S, et al. Optical design and analysis of laser radar spectrometer with high accuracy[J]. Optics and Precision Engineering, 2018, 26(8): 1904-1909. (in Chinese) doi: 10.3788/OPE.20182608.1904
    [8]
    刘庆省, 郭金家, 杨德旺, 等. 小型高灵敏度水下拉曼光谱系统[J]. 光学 精密工程,2018,26(1):8-13. doi: 10.3788/OPE.20182601.0008

    LIU Q X, GUO J J, YANG D W, et al. A compact underwater Raman spectroscopy system with high sensitivity[J]. Optics and Precision Engineering, 2018, 26(1): 8-13. (in Chinese) doi: 10.3788/OPE.20182601.0008
    [9]
    WANG W B, MAJOR A, PALIWAL J. Grating-stabilized external cavity diode lasers for Raman spectroscopy—a review[J]. Applied Spectroscopy Reviews, 2012, 47(2): 116-143. doi: 10.1080/05704928.2011.631649
    [10]
    刘燕德, 靳昙昙, 王海阳. 基于拉曼光谱的三组分食用调和油快速定量检测[J]. 光学 精密工程,2015,23(9):2490-2496. doi: 10.3788/OPE.20152309.2490

    LIU Y D, JIN T T, WANG H Y. Rapid quantitative determination of components in ternary blended edible oil based on Raman spectroscopy[J]. Optics and Precision Engineering, 2015, 23(9): 2490-2496. (in Chinese) doi: 10.3788/OPE.20152309.2490
    [11]
    ZRIMSEK A B, CHIANG N, MATTEI M, et al. Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy[J]. Chemical Reviews, 2017, 117(11): 7583-7613. doi: 10.1021/acs.chemrev.6b00552
    [12]
    PITTS W M. Carbon monoxide concentration measurements in fuel cell environments using Tunable Diode Laser Absorption Spectroscopy (TDLAS): an assessment[R]. 2017.
    [13]
    CHOI D W, JEON M G, CHO G R, et al. Performance improvements in temperature reconstructions of 2-D tunable diode laser absorption spectroscopy (TDLAS)[J]. Journal of Thermal Science, 2016, 25(1): 84-89. doi: 10.1007/s11630-016-0837-z
    [14]
    贾良权, 祁亨年, 胡文军, 等. 种子呼吸CO2浓度检测系统[J]. 光学 精密工程,2019,27(6):1397-1404. doi: 10.3788/OPE.20192706.1397

    JIA L Q, QI H N, HU W J, et al. CO2 concentration detection system for seed respiration[J]. Optics and Precision Engineering, 2019, 27(6): 1397-1404. (in Chinese) doi: 10.3788/OPE.20192706.1397
    [15]
    李春光, 董磊, 王一丁, 等. 基于TDLAS和ICL的紧凑中红外痕量气体探测系统[J]. 光学 精密工程,2018,26(8):1855-1861. doi: 10.3788/OPE.20182608.1855

    LI CH G, DONG L, WANG Y D, et al. Compact mid-infrared trace gas detection system based on TDLAS and ICL[J]. Optics and Precision Engineering, 2018, 26(8): 1855-1861. (in Chinese) doi: 10.3788/OPE.20182608.1855
    [16]
    龙睿, 王海龙, 成若海, 等. 外腔反馈对量子点激光器输出特性的影响[J]. 发光学报,2013,34(4):474-479. doi: 10.3788/fgxb20133404.0474

    LONG R, WANG H L, CHENG R H, et al. Influence of external cavity feedback on the output characteristics of quantum-dot lasers[J]. Chinese Journal of Luminescence, 2013, 34(4): 474-479. (in Chinese) doi: 10.3788/fgxb20133404.0474
    [17]
    刘荣战, 薄报学, 么娜, 等. 体布拉格光栅外腔红光半导体激光器实验研究[J]. 发光学报,2019,40(11):1401-1408. doi: 10.3788/fgxb20194011.1401

    LIU R ZH, BO B X, YAO N, et al. Experimental research on volume-Bragg-grating external cavity red-light semiconductor lasers[J]. Chinese Journal of Luminescence, 2019, 40(11): 1401-1408. (in Chinese) doi: 10.3788/fgxb20194011.1401
    [18]
    GUO H P, OLAMAX G T. Analysis of no mode-hop tuning of mirror-grating external-cavity diode laser[J]. Optics Communications, 2018, 421: 90-93. doi: 10.1016/j.optcom.2018.03.074
    [19]
    田景玉, 张俊, 彭航宇, 等. 用于碱金属蒸汽激光器泵浦的窄线宽780 nm半导体激光源[J]. 发光学报,2019,40(9):1123-1129. doi: 10.3788/fgxb20194009.1123

    TIAN J Y, ZHANG J, PENG H Y, et al. 780 nm diode laser source with narrow linewidth for alkali metal vapor laser pumping[J]. Chinese Journal of Luminescence, 2019, 40(9): 1123-1129. (in Chinese) doi: 10.3788/fgxb20194009.1123
    [20]
    DING D, LV W L, LV X Q, et al. Influence of grating parameters on the performance of a high-power blue external-cavity semiconductor laser[J]. Applied Optics, 2018, 57(7): 1589-1593. doi: 10.1364/AO.57.001589
    [21]
    郭海平, 万辰皓, 许成文, 等. 外腔半导体激光器动态模稳定性的研究[J]. 激光技术,2016,40(5):706-710. doi: 10.7510/jgjs.issn.1001-3806.2016.05.018

    GUO H P, WAN CH H, XU CH W, et al. Study on dynamic mode stability of external cavity diode lasers[J]. Laser Technology, 2016, 40(5): 706-710. (in Chinese) doi: 10.7510/jgjs.issn.1001-3806.2016.05.018
    [22]
    HONG W X. Design and characterization of a littrow configuration external cavity diode laser[EB/OL]. http://web.mit.edu/RSI/compendium/edit2004/Final/hong-wenxian-caltech-both.pdf.
    [23]
    金杰, 郭曙光, 吕福云, 等. 外腔半导体激光器的实验研究[J]. 南开大学学报(自然科学),2002,35(4):56-59.

    JIN J, GUO SH G, LU F Y, et al. Study of external cavity semiconductor laser[J]. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2002, 35(4): 56-59. (in Chinese)
    [24]
    李斌, 涂嫔, 徐勇跃, 等. 405nm波段光栅外腔窄线宽蓝紫光半导体激光器[J]. 激光与光电子学进展,2015,52(3):031404.

    LI B, TU P, XU Y Y, et al. Narrow linewidth diode laser with grating external cavity in 405 nm band[J]. Laser &Optoelectronics Progress, 2015, 52(3): 031404. (in Chinese)
    [25]
    陈少伟, 吕雪芹, 张江勇, 等. 蓝紫光宽带可调谐光栅外腔半导体激光器[J]. 激光与光电子学进展,2013,50(11):111405.

    CHEN SH W, LÜ X Q, ZHANG J Y, et al. Blue-violet broadly tunable grating-coupled external cavity semiconductor laser[J]. Laser &Optoelectronics Progress, 2013, 50(11): 111405. (in Chinese)
    [26]
    荣春朝, 严进一, 龚谦. Littman结构的平移透镜外腔半导体激光器[J]. 激光杂志,2017,38(6):1-3.

    RONG CH CH, YAN J Y, GONG Q. Shift lens external cavity semiconductor lasers of Littman configuration[J]. Laser Journal, 2017, 38(6): 1-3. (in Chinese)
    [27]
    周长帅, 王海龙, 龚谦, 等. 基于光栅相移效应的Littrow激光器的无跳模调谐[J]. 通信技术,2018,51(5):1045-1049. doi: 10.3969/j.issn.1002-0802.2018.05.010

    ZHOU CH SH, WANG H L, GONG Q, et al. Mode-hop-free tuning of Littrow lasers based on grating phase-shift effect[J]. Communications Technology, 2018, 51(5): 1045-1049. (in Chinese) doi: 10.3969/j.issn.1002-0802.2018.05.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article views(1938) PDF downloads(167) Cited by()
    Proportional views

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return